UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Variable-step L1 method combined with time two-grid algorithm for multi-singularity problems arising from two-dimensional nonlinear delay fractional equations Journal article
Ou, Caixia, Cen, Dakang, Vong, Seakweng. Variable-step L1 method combined with time two-grid algorithm for multi-singularity problems arising from two-dimensional nonlinear delay fractional equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2024, 139, 108270.
Authors:  Ou, Caixia;  Cen, Dakang;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.4/3.3 | Submit date:2024/09/03
Finite Difference Method  Multi-singularity Problem  Nonlinear Delay Fractional Equations  Stability And Convergence  Time Two-grid Technique  
A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates Journal article
Li, Dongfang, She, Mianfu, Sun, Hai wei, Yan, Xiaoqiang. A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates[J]. Journal of Scientific Computing, 2022, 91(1).
Authors:  Li, Dongfang;  She, Mianfu;  Sun, Hai wei;  Yan, Xiaoqiang
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:2.8/2.7 | Submit date:2022/05/04
High-order Time-stepping Methods  Modified Grönwall Inequality  Nonlinear Time-fractional Equations  Pointwise-in-time Error Estimates  
A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates Journal article
Li, D. F., She, M.F., Sun, H. W., Yan, X.Q.. A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates[J]. Journal of Scientific Computing, 2022, 91(1), 1-27.
Authors:  Li, D. F.;  She, M.F.;  Sun, H. W.;  Yan, X.Q.
Favorite | TC[WOS]:8 TC[Scopus]:8 | Submit date:2022/07/25
Nonlinear Time-fractional Equations  High-order Time-stepping Methods  Modified Grönwall Inequality  Pointwise-in-time Error Estimates  
A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS Journal article
Zhang,Chun Hua, Jin,Jun Wei, Sun,Hai Wei, Sheng,Qin. A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Applications of Mathematics, 2021, 66(2), 213–232.
Authors:  Zhang,Chun Hua;  Jin,Jun Wei;  Sun,Hai Wei;  Sheng,Qin
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:0.6/0.6 | Submit date:2021/03/09
Nonlinear Time Fractional Schrödinger Equations  L1 Formula  Hybrid Compact Difference Method  Linearization  Unconditional Stability  
A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS Journal article
Zhang,Chun Hua, Jin,Jun Wei, Sun,Hai Wei, Sheng,Qin. A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Applications of Mathematics, 2021, 66(2), 213-232.
Authors:  Zhang,Chun Hua;  Jin,Jun Wei;  Sun,Hai Wei;  Sheng,Qin
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:0.6/0.6 | Submit date:2022/07/25
Nonlinear Time Fractional Schrödinger Equations  L1 Formula  Hybrid Compact Difference Method  Linearization  Unconditional Stability  
A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations Journal article
Lyu, Pin, Vong, Seakweng. A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations[J]. NUMERICAL ALGORITHMS, 2018, 78(2), 485-511.
Authors:  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:30 TC[Scopus]:30  IF:1.7/1.9 | Submit date:2018/10/30
Linearized Scheme  Time Fractional Differential Equations  Nonlinear Klein-gordon Equations  Convergence