UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Inexact generalized Noda iterations for generalized eigenproblems Journal article
Ge,Xiao, Chen,Xiao Shan, Vong,Seak Weng. Inexact generalized Noda iterations for generalized eigenproblems[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366, 112418.
Authors:  Ge,Xiao;  Chen,Xiao Shan;  Vong,Seak Weng
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.1 | Submit date:2021/03/09
Inexact Generalized Noda Iteration  Nonnegative Irreducible Matrix  Perron–frobenius Theory  Superlinear Convergence  
Inexact generalized noda iterations for generalized eigenproblems Journal article
Ge, X., Chen, X. S., Vong, S. W.. Inexact generalized noda iterations for generalized eigenproblems[J]. Journal of Computational and Applied Mathematics, 2020, 112418-112418.
Authors:  Ge, X.;  Chen, X. S.;  Vong, S. W.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.1 | Submit date:2022/07/02
Inexact Generalized Noda Iteration  Nonnegative Irreducible Matrix  Perron-frobenius Theory  
Noda iterations for generalized eigenproblems following Perron-Frobenius theory Journal article
Chen,Xiao Shan, Vong,Seak Weng, Li,Wen, Xu,Hongguo. Noda iterations for generalized eigenproblems following Perron-Frobenius theory[J]. Numerical Algorithms, 2019, 80(3), 937-955.
Authors:  Chen,Xiao Shan;  Vong,Seak Weng;  Li,Wen;  Xu,Hongguo
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.7/1.9 | Submit date:2021/03/09
Generalized Eigenproblem  Generalized Noda Iteration  M-matrix  Nonnegative Irreducible Matrix  Perron-frobenius Theory  Quadratic Convergence