UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Data-driven geotechnical site recognition using machine learning and sparse representation Journal article
Guan, Zheng, Wang, Yu, Phoon, Kok Kwang. Data-driven geotechnical site recognition using machine learning and sparse representation[J]. Engineering Geology, 2025, 346.
Authors:  Guan, Zheng;  Wang, Yu;  Phoon, Kok Kwang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:6.9/7.6 | Submit date:2025/01/22
Geotechnical Site Characterization  Spatial Variability  Site Recognition  Sparse Representation  Proper Orthogonal Decomposition  
Weak pre-orthogonal adaptive Fourier decomposition in Bergman spaces of pseudoconvex domains Journal article
Wu, Hio Tong, Leong, Ieng Tak, Qian, Tao. Weak pre-orthogonal adaptive Fourier decomposition in Bergman spaces of pseudoconvex domains[J]. Complex Variables and Elliptic Equations, 2023, 68(4), 568 - 577.
Authors:  Wu, Hio Tong;  Leong, Ieng Tak;  Qian, Tao
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.6/0.7 | Submit date:2022/05/13
Bergman Kernel  Bergman Space  Boundary Vanishing Property  Pseudoconvex Domain  Weak Maximal Selection Principle  Weak Pre-orthogonal Adaptive Fourier Decomposition  
A Sparse Kernel Approximate Method for Fractional Boundary Value Problems Journal article
Bai, Hongfang, Leong, Ieng Tak. A Sparse Kernel Approximate Method for Fractional Boundary Value Problems[J]. Communications on Applied Mathematics and Computation, 2022, 5(4), 1406-1421.
Authors:  Bai, Hongfang;  Leong, Ieng Tak
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.4/0 | Submit date:2023/01/30
Fractional Boundary Value Problems (Fbvps)  Reproducing Kernel Hilbert Space (Rkhs)  Weak Maximal Selection Principle  Weak Pre-orthogonal Adaptive Fourier Decomposition (W-poafd)  
A Sliding Windows Singular Decomposition Model of Monitoring Data for Operational Tunnels Journal article
Xing, Rongjun, Xu, Pai, Yao, Zhongming, Li, Zhong, Yin, Yuanwei, Shi, Bo. A Sliding Windows Singular Decomposition Model of Monitoring Data for Operational Tunnels[J]. Symmetry, 2022, 14(7).
Authors:  Xing, Rongjun;  Xu, Pai;  Yao, Zhongming;  Li, Zhong;  Yin, Yuanwei; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2022/08/02
Big Data  Data-driven  Orthogonal Decomposition  Principal Component Analysis  Tunnel Deformation  
Functional Feature Extraction for Hyperspectral Image Classification With Adaptive Rational Function Approximation Journal article
Ye, Zhijing, Qian, Tao, Zhang, Liming, Dai, Lei, Li, Hong, Benediktsson, Jon Atli. Functional Feature Extraction for Hyperspectral Image Classification With Adaptive Rational Function Approximation[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59(9), 7680 - 7694.
Authors:  Ye, Zhijing;  Qian, Tao;  Zhang, Liming;  Dai, Lei;  Li, Hong; et al.
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:7.5/7.6 | Submit date:2022/05/13
Adaptive Fourier Decomposition (Fd) (aFd)  Functional Spectral-spatial Features  Hyperspectral Image (Hsi) Classification  Rational Orthogonal Function System.  
Adaptive rational approximation in Bergman space on bounded symmetric domain Journal article
Wu, Hio Tong, Leong, Ieng Tak, Qian, Tao. Adaptive rational approximation in Bergman space on bounded symmetric domain[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 506, 25591.
Authors:  Wu, Hio Tong;  Leong, Ieng Tak;  Qian, Tao
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:1.2/1.3 | Submit date:2022/03/04
Bergman Kernel  Bergman Space  Boundary Vanishing Property  Generalized Kernel Functions  Maximum Selection Principle  Pre-orthogonal Adaptive Fourier Decomposition  
Adaptive Rational Approximation in Bergman Space on Bounded Symmetric Domain Journal article
Wu, Hio Tong, Leong, Ieng Tak, Qian, Tao. Adaptive Rational Approximation in Bergman Space on Bounded Symmetric Domain[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 506, 25591.
Authors:  Wu, Hio Tong;  Leong, Ieng Tak;  Qian, Tao
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:1.2/1.3 | Submit date:2022/08/30
Bergman Space  Bergman Kernel  Reproducing Kernel Hilbert Space  Pre-orthogonal Adaptive Fourier Decomposition (Poafd)  Generalized Kernel Functions  Boundary Vanishing Property  Maximum Selection Principle  
Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse Journal article
Li, Wen, Chen, Yanmei, Vong, Seakweng, Luo, Qilun. Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse[J]. NUMERICAL ALGORITHMS, 2018, 79(2), 657-677.
Authors:  Li, Wen;  Chen, Yanmei;  Vong, Seakweng;  Luo, Qilun
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:1.7/1.9 | Submit date:2018/10/30
Singular Value Decomposition  Orthogonal Projection  Perturbation  Generalized Inverse  
Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse Journal article
Li,Wen, Chen,Yanmei, Vong,Seakweng, Luo,Qilun. Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse[J]. Numerical Algorithms, 2018, 79(2), 657-677.
Authors:  Li,Wen;  Chen,Yanmei;  Vong,Seakweng;  Luo,Qilun
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:1.7/1.9 | Submit date:2021/03/09
Generalized Inverse  Orthogonal Projection  Perturbation  Singular Value Decomposition  
The AFD methods to compute Hilbert transform Journal article
Mo Y., Qian T., Mai W., Chen Q.. The AFD methods to compute Hilbert transform[J]. Applied Mathematics Letters, 2015, 45, 18-24.
Authors:  Mo Y.;  Qian T.;  Mai W.;  Chen Q.
Favorite | TC[WOS]:14 TC[Scopus]:15 | Submit date:2019/02/11
Adaptive  Fourier Decomposition  Hardy Space  Hilbert Transform  Orthogonal Rational System  Takenaka-malmquist System