UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Low-rank matrix recovery from noise via an mdl framework-based atomic norm Journal article
Qin, Anyong, Xian, Lina, Yang, Yongliang, Zhang, Taiping, Yan Tang, Yuan. Low-rank matrix recovery from noise via an mdl framework-based atomic norm[J]. Sensors (Switzerland), 2020, 20(21), 1-21.
Authors:  Qin, Anyong;  Xian, Lina;  Yang, Yongliang;  Zhang, Taiping;  Yan Tang, Yuan
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:3.4/3.7 | Submit date:2021/12/06
Atomic Norm  Low-rank Matrix Recovery  Minimum Description Length Principle  Robust Principal Components Analysis  
Artificial intelligence based discovery of the association between depression and chronic fatigue syndrome Journal article
Zhang, Feilong, Wu, Chuanhong, Jia, Caixia, Gao, Kuo, Wang, Jinping, Zhao, Huihui, Wang, Wei, Chen, Jianxin. Artificial intelligence based discovery of the association between depression and chronic fatigue syndrome[J]. Journal of Affective Disorders, 2019, 250, 380-390.
Authors:  Zhang, Feilong;  Wu, Chuanhong;  Jia, Caixia;  Gao, Kuo;  Wang, Jinping; et al.
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:4.9/5.4 | Submit date:2022/04/15
Chronic Fatigue Syndrome  Depressive Disorder  Metabolite Biomarkers  Partial Least Squares Discriminant Analysis  Principal Components Analysis  
The decomposition and compression of HRTF based on adaptive fourier decomposition Conference paper
Fang Y., Shi M., Huang Q., Zhang L.. The decomposition and compression of HRTF based on adaptive fourier decomposition[C], 2018.
Authors:  Fang Y.;  Shi M.;  Huang Q.;  Zhang L.
Favorite | TC[WOS]:1 TC[Scopus]:0 | Submit date:2019/04/04
Adaptive Fourier Decomposition  Decomposition And Compression  Head-related Transfer Function  Principal Components Analysis  
The decomposition and compression of hrtf based on adaptive fourier decomposition Conference paper
Fang Y., Shi M., Huang Q., Zhang L.. The decomposition and compression of hrtf based on adaptive fourier decomposition[C], 2017.
Authors:  Fang Y.;  Shi M.;  Huang Q.;  Zhang L.
Favorite |  | Submit date:2019/04/04
Adaptive fourier decomposition  Decomposition and compression  Head-related transfer function  Principal components analysis  
Application and research on SOM-PCA based RBF neural network in earthquake prediction Conference paper
Chen Y., Wang Y.. Application and research on SOM-PCA based RBF neural network in earthquake prediction[C], 2010, 315-320.
Authors:  Chen Y.;  Wang Y.
Favorite |  | Submit date:2019/01/16
Earthquake magnitude  Earthquake prediction  Principal components analysis  RBF neural network  SOM neural network  
Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines Journal article
Wong, Pak Kin, Vong, Chi Man, Tam, Lap Mou, Li, Ke. Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines[J]. International Journal of Vehicle Systems Modelling and Testing, 2009, 3(4), 312-330.
Authors:  Wong, Pak Kin;  Vong, Chi Man;  Tam, Lap Mou;  Li, Ke
Favorite | TC[Scopus]:15 | Submit date:2018/10/30
Least Squares Support Vector Machines  Kernel Principal Components Analysis  Automotive Engine Power Performance Model  Kpca  Ls-svm  
Bhargava and Ishizuka's BI-method: A neglected method for variable selection Journal article
SHING ON LEUNG, JOHN SACHS. Bhargava and Ishizuka's BI-method: A neglected method for variable selection[J]. Journal of Experimental Education, 2005, 73(4), 353-367.
Authors:  SHING ON LEUNG;  JOHN SACHS
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.9/2.8 | Submit date:2020/11/06
Bi-method  Item Selection  Principal Components  Principal Variables  Variable Selection  
Design of Multiple Cause-Selecting Charts for Multistage Processes with Model Uncertainty Journal article
Lianjie Shu, Fugee Tsung, Kailash C. Kapur. Design of Multiple Cause-Selecting Charts for Multistage Processes with Model Uncertainty[J]. Quality Engineering, 2004, 16(3), 437-450.
Authors:  Lianjie Shu;  Fugee Tsung;  Kailash C. Kapur
Favorite | TC[Scopus]:38 | Submit date:2019/11/29
Principal Components Regression  Statistical Process Control