UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Prolate spheroidal wave functions associated with the quaternionic Fourier transform Journal article
Zou,Cuiming, Kou,Kit Ian, Morais,Joao. Prolate spheroidal wave functions associated with the quaternionic Fourier transform[J]. Mathematical Methods in the Applied Sciences, 2018, 41(11), 4003-4020.
Authors:  Zou,Cuiming;  Kou,Kit Ian;  Morais,Joao
Favorite | TC[WOS]:3 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2021/03/11
Bandlimited Extrapolation  Mathieu Functions  Quaternionic Analysis  Quaternionic Fourier Transform  Quaternionic Signal  The Energy Concentration Problem  
Prolate spheroidal wave functions associated with the quaternionic Fourier transform Journal article
Zou, Cuiming, Kou, Kit Ian, Morais, Joao. Prolate spheroidal wave functions associated with the quaternionic Fourier transform[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41(11), 4003-4020.
Authors:  Zou, Cuiming;  Kou, Kit Ian;  Morais, Joao
Favorite | TC[WOS]:3 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2018/10/30
Quaternionic Analysis  Quaternionic Fourier Transform  Quaternionic Signal  The Energy Concentration Problem  Mathieu Functions  Bandlimited Extrapolation  
Constructing prolate spheroidal quaternion wave functions on the sphere Journal article
Morais,Joao, Kou,Kit Ian. Constructing prolate spheroidal quaternion wave functions on the sphere[J]. Mathematical Methods in the Applied Sciences, 2016, 39(14), 3961-3978.
Authors:  Morais,Joao;  Kou,Kit Ian
Favorite | TC[WOS]:4 TC[Scopus]:6  IF:2.1/2.0 | Submit date:2021/03/11
30c65  Prolate Spheroidal Wave Functions  Quaternionic Analysis  Quaternionic Fourier Transform  Quaternionic Functions  Spherical Harmonics  Subclass 30g35  The Energy Concentration Problem  
Constructing prolate spheroidal quaternion wave functions on the sphere Journal article
Morais J., Kou K.I.. Constructing prolate spheroidal quaternion wave functions on the sphere[J]. Mathematical Methods in the Applied Sciences, 2016, 39(14), 3961-3978.
Authors:  Morais J.;  Kou K.I.
Favorite | TC[WOS]:4 TC[Scopus]:6 | Submit date:2019/02/13
30c65  Prolate Spheroidal Wave Functions  Quaternionic Analysis  Quaternionic Fourier Transform  Quaternionic Functions  Spherical Harmonics  Subclass 30g35  The Energy Concentration Problem  
Uncertainty principles associated with quaternionic linear canonical transforms Journal article
Kou K.I., Ou J., Morais J.. Uncertainty principles associated with quaternionic linear canonical transforms[J]. Mathematical Methods in the Applied Sciences, 2016, 39(10), 2722-2736.
Authors:  Kou K.I.;  Ou J.;  Morais J.
Favorite | TC[WOS]:30 TC[Scopus]:36 | Submit date:2019/02/13
Gaussian Quaternionic Signal  Hypercomplex Functions  Quantum Mechanics  Quaternion Analysis  Quaternionic Fourier Transform  Quaternionic Linear Canonical Transform  Uncertainly Principle  
On 3D orthogonal prolate spheroidal monogenics Journal article
Morais,J., Nguyen,H. M., Kou,K. I.. On 3D orthogonal prolate spheroidal monogenics[J]. Mathematical Methods in the Applied Sciences, 2016, 39(4), 635-648.
Authors:  Morais,J.;  Nguyen,H. M.;  Kou,K. I.
Favorite | TC[WOS]:5 TC[Scopus]:9  IF:2.1/2.0 | Submit date:2021/03/11
Ferrer's Associated Legendre Functions  Hyperbolic Functions  Prolate Spheroidal Harmonics  Prolate Spheroidal Monogenics  Quaternionic Analysis  Riesz System  
On 3D orthogonal prolate spheroidal monogenics Journal article
Morais J., Nguyen H.M., Kou K.I.. On 3D orthogonal prolate spheroidal monogenics[J]. Mathematical Methods in the Applied Sciences, 2016, 39(4), 635-648.
Authors:  Morais J.;  Nguyen H.M.;  Kou K.I.
Favorite | TC[WOS]:5 TC[Scopus]:9 | Submit date:2019/02/13
Ferrer's Associated Legendre Functions  Hyperbolic Functions  Prolate Spheroidal Harmonics  Prolate Spheroidal Monogenics  Quaternionic Analysis  Riesz System  
Generalized holornorphic orthogonal fìrnction systenrs over infinite cylinders Journal article
Morais, J., Kou, K. I., Le, H. T. . Generalized holornorphic orthogonal fìrnction systenrs over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 2574-2588.
Authors:  Morais, J.;  Kou, K. I.;  Le, H. T.
Favorite |  | Submit date:2022/08/27
quaternionic analysis  Bessel functions  Chebyshev polynomials  hyperbolic functions  cylindrical harmonics  generalized cylindrical holomorphics  
Generalized holomorphic orthogonal function systems over infinite cylinders Journal article
Morais,J., Kou,K. I., Le,H. T.. Generalized holomorphic orthogonal function systems over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 38(12), 2574-2588.
Authors:  Morais,J.;  Kou,K. I.;  Le,H. T.
Favorite | TC[WOS]:1 TC[Scopus]:3  IF:2.1/2.0 | Submit date:2021/03/11
Bessel Functions  Chebyshev Polynomials  Cylindrical Harmonics  Generalized Cylindrical Holomorphics  Hyperbolic Functions  Quaternionic Analysis  
Computational geometric and boundary value properties of Oblate Spheroidal Quaternionic Wave Functions Journal article
Morais,J., Pérez-de la Rosa,M. A., Kou,K. I.. Computational geometric and boundary value properties of Oblate Spheroidal Quaternionic Wave Functions[J]. Wave Motion, 2015, 57, 112-128.
Authors:  Morais,J.;  Pérez-de la Rosa,M. A.;  Kou,K. I.
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:2.1/1.9 | Submit date:2021/03/11
Bergman Kernel Function  Ferrer's Associated Legendre Functions  Helmholtz Equation  Oblate Spheroidal Wave Functions  Quaternionic Analysis