×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [2]
THE STATE KEY LA... [1]
Faculty of Busin... [1]
INSTITUTE OF COL... [1]
Authors
WAN FENG [1]
YANG ZHIXIN [1]
ZHOU YICONG [1]
Document Type
Journal article [4]
Date Issued
2023 [1]
2021 [1]
2020 [1]
2019 [1]
Language
英語English [4]
Source Publication
IEEE TRANSACTION... [1]
IEEE Transaction... [1]
IEEE Transaction... [1]
Neural Networks [1]
Indexed By
SCIE [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-4 of 4
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Gradient Learning With the Mode-Induced Loss: Consistency Analysis and Applications
Journal article
Hong Chen, Youcheng Fu, Xue Jiang, Yanhong Chen, Weifu Li, Yicong Zhou, Feng Zheng. Gradient Learning With the Mode-Induced Loss: Consistency Analysis and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35(7), 9686-9699.
Authors:
Hong Chen
;
Youcheng Fu
;
Xue Jiang
;
Yanhong Chen
;
Weifu Li
; et al.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
10.2
/
10.4
|
Submit date:2023/08/03
Gradient Learning (Gl)
Learning Theory
Mode-induced Loss
Rademacher Complexity
Variable Selection
On the Benefits of Two Dimensional Metric Learning
Journal article
Di Wu, Fan Zhou, Boyu Wang, Qicheng Lao, Chi Man Wong, Changjian Shui, Yuan Zhou, Feng Wan. On the Benefits of Two Dimensional Metric Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 35(2), 1909-1921.
Authors:
Di Wu
;
Fan Zhou
;
Boyu Wang
;
Qicheng Lao
;
Chi Man Wong
; et al.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
8.9
/
8.8
|
Submit date:2022/05/13
Two Dimensional Learning
Metric Learning
Rademacher Complexity
Boosting
Low-rank Matrices
A new learning paradigm for random vector functional-link network: RVFL+
Journal article
Zhang,Peng Bo, Yang,Zhi Xin. A new learning paradigm for random vector functional-link network: RVFL+[J]. Neural Networks, 2020, 122, 94-105.
Authors:
Zhang,Peng Bo
;
Yang,Zhi Xin
Favorite
|
TC[WOS]:
68
TC[Scopus]:
77
IF:
6.0
/
7.9
|
Submit date:2021/03/11
Rvfl++++
Krvfl++++
Learning Using Privileged Information
The Rademacher Complexity
Svm++++
Random Vector Functional Link Networks
Finite Gaussian Mixture Model Based Multimodeling for Nonlinear Distributed Parameter Systems
Journal article
Xu, Kangkang, Yang, Haidong, Zhu, Chengjiu, Hu, Luoke. Finite Gaussian Mixture Model Based Multimodeling for Nonlinear Distributed Parameter Systems[J]. IEEE Transactions on Industrial Informatics, 2019, 16(3), 1754-1763.
Authors:
Xu, Kangkang
;
Yang, Haidong
;
Zhu, Chengjiu
;
Hu, Luoke
Favorite
|
TC[WOS]:
16
TC[Scopus]:
17
IF:
11.7
/
11.4
|
Submit date:2021/12/06
Distributed Parameter Systems (Dpss)
Finite Gaussian Mixture Model (Fgmm)
Multiple Spatiotemporal Modeling
Principle Component Regression (Pcr)
Rademacher Complexity