UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features with Structure Preservation on 3-D Meshes Journal article
Han Z., Liu Z., Han J., Vong C.-M., Bu S., Chen C.L.P.. Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features with Structure Preservation on 3-D Meshes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10), 2268-2281.
Authors:  Han Z.;  Liu Z.;  Han J.;  Vong C.-M.;  Bu S.; et al.
Favorite | TC[WOS]:44 TC[Scopus]:45 | Submit date:2019/02/11
3-d Mesh  Laplace-beltrami Operator  Mesh Convolutional Deep Belief Networks (Mcdbns)  Mesh Convolutional Restricted Boltzmann Machines (Mcrbms)  
Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning Journal article
Liu, Z.B., Jia, Z., Vong, C. M., Bu, S.H., Han, J.W., Tang, X.J.. Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning[J]. IEEE Transactions on Industrial Informatics (SCI-E), 2017, 1213-1226.
Authors:  Liu, Z.B.;  Jia, Z.;  Vong, C. M.;  Bu, S.H.;  Han, J.W.; et al.
Favorite |   IF:11.7/11.4 | Submit date:2022/08/09
Analog circuits  deep belief network  deep learning  diagnosis  failure  fault  restricted Boltzmann machines.  
Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning Journal article
Liu, Zhenbao, Jia, Zhen, Vong, Chi-Man, Bu, Shuhui, Han, Junwei, Tang, Xiaojun. Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13(3), 1213-1226.
Authors:  Liu, Zhenbao;  Jia, Zhen;  Vong, Chi-Man;  Bu, Shuhui;  Han, Junwei; et al.
Favorite | TC[WOS]:91 TC[Scopus]:110  IF:11.7/11.4 | Submit date:2018/10/30
Analog Circuits  Deep Belief Network  Deep Learning  Diagnosis  Failure  Fault  Restricted Boltzmann Machines