×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
CHEN YANG [6]
Document Type
Journal article [5]
Review article [1]
Date Issued
2023 [1]
2022 [1]
2021 [1]
2020 [2]
2018 [1]
Language
英語English [6]
Source Publication
APPLIED MATHEMAT... [1]
Analysis and Mat... [1]
IEEE Access [1]
JOURNAL OF MATHE... [1]
Journal of Diffe... [1]
Mathematical Met... [1]
More...
Indexed By
SCIE [6]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants
Journal article
Min,Chao, Chen,Yang. Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants[J]. Mathematical Methods in the Applied Sciences, 2023, 46(14), 15270-15284.
Authors:
Min,Chao
;
Chen,Yang
Favorite
|
TC[WOS]:
10
TC[Scopus]:
10
IF:
2.1
/
2.0
|
Submit date:2023/08/03
Asymptotic Expansions
Chazy Ii System
Hankel Determinants
Painlevé Iv
Recurrence Coefficients
Semi-classical Laguerre Polynomials
Asymptotic relations for semi-classical Laguerre orthogonal polynomials and the associated Hankel determinants
Journal article
Pengju Han, Yang Chen. Asymptotic relations for semi-classical Laguerre orthogonal polynomials and the associated Hankel determinants[J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022.
Authors:
Pengju Han
;
Yang Chen
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
1.2
/
1.3
|
Submit date:2022/07/04
Random Matrix Theory
Hankel Determinant
Semi-classical Laguerre Weight
Ladder Operators
Orthogonal Polynomials
Semi-classical Jacobi polynomials, Hankel determinants and asymptotics
Journal article
Min, Chao, Chen, Yang. Semi-classical Jacobi polynomials, Hankel determinants and asymptotics[J]. Analysis and Mathematical Physics, 2021, 12, 8.
Authors:
Min, Chao
;
Chen, Yang
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
1.4
/
1.4
|
Submit date:2022/03/04
Asymptotic Expansions
Differential And Difference Equations
Hankel Determinants
Ladder Operators
Painlevé v
Semi-classical Jacobi Polynomials
Orthogonal polynomials, bi-confluent Heun equations and semi-classical weights
Journal article
Wang,Dan, Zhu,Mengkun, Chen,Yang. Orthogonal polynomials, bi-confluent Heun equations and semi-classical weights[J]. Journal of Difference Equations and Applications, 2020, 26(7), 1000-1012.
Authors:
Wang,Dan
;
Zhu,Mengkun
;
Chen,Yang
Favorite
|
TC[WOS]:
4
TC[Scopus]:
3
IF:
1.1
/
1.2
|
Submit date:2021/03/09
Asymptotic
Bi-confluent Heun Equation
Orthogonal Polynomials
Semi-classical
Orthogonal polynomials with a semi-classical weight and their recurrence coefficients
Review article
2020
Authors:
Dan Wang
;
Mengkun Zhu
;
Yang Chen
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
3.4
/
3.7
|
Submit date:2021/03/09
Asymptotics
Hankel Determinant
Orthogonal Polynomials
Semi-classical
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
Journal article
Branquinho, A., Chen, Y., Filipuk, G., Rebocho, M. N.. A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices[J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 334, 356-366.
Authors:
Branquinho, A.
;
Chen, Y.
;
Filipuk, G.
;
Rebocho, M. N.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
3.5
/
3.1
|
Submit date:2018/10/30
Orthogonal Polynomials
Divided-difference Operator
Non-uniform Lattices
Askey-wilson Operator
Semi-Classical Class