UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
A 13-Bit ENOB Third-Order Noise-Shaping SAR ADC Employing Hybrid Error Control Structure and LMS-Based Foreground Digital Calibration Journal article
Zhang, Qihui, Ning, Ning, Zhang, Zhong, Li, Jing, Wu, Kejun, Chen, Yong, Yu, Qi. A 13-Bit ENOB Third-Order Noise-Shaping SAR ADC Employing Hybrid Error Control Structure and LMS-Based Foreground Digital Calibration[J]. IEEE Journal of Solid-State Circuits, 2022, 57(7), 2181-2195.
Authors:  Zhang, Qihui;  Ning, Ning;  Zhang, Zhong;  Li, Jing;  Wu, Kejun; et al.
Favorite | TC[WOS]:23 TC[Scopus]:27  IF:4.6/5.6 | Submit date:2022/05/17
Analog-to-digital Converter (Adc)  Calibration  Capacitors  Delays  Dither-based Digital Calibration  Finite Impulse Response Filters  Hybrid Error Control Structure  Noise Shaping  Noise Shaping (Ns)  Quantization (Signal)  Successive Approximation Register (Sar).  Topology  
Gain Error Calibrations for Two-Step ADCs: Optimizations Either in Accuracy or Chip Area Journal article
Wang, Guan Cheng, Zhu, Yan, Chan, Chi-Hang, Seng-Pan, U., Martins, Rui P.. Gain Error Calibrations for Two-Step ADCs: Optimizations Either in Accuracy or Chip Area[J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26(11), 2279-2289.
Authors:  Wang, Guan Cheng;  Zhu, Yan;  Chan, Chi-Hang;  Seng-Pan, U.;  Martins, Rui P.
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:2.8/2.8 | Submit date:2019/01/17
Bridge Digital-to-analog Converter (Dac)  Gain Error Calibration  Successive Approximation Register (Sar)  Analog-to-digital Converters (Adcs)  Testing Signal Generation (Tsg)  
Reconstruction of analytic signal in Sobolev space by framelet sampling approximation Journal article
Li, Youfa, Qian, Tao. Reconstruction of analytic signal in Sobolev space by framelet sampling approximation[J]. APPLICABLE ANALYSIS, 2018, 97(2), 194-209.
Authors:  Li, Youfa;  Qian, Tao
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.1/1.1 | Submit date:2018/10/30
Analytic Signal  Dual Framelets  Sobolev Space  Adjustable Sampling System  Approximation Order  Dnumerical Singularity  
Greedy adaptive decomposition of signals based on nonlinear Fourier atoms Journal article
Kou,Kit Ian, Li,Hong. Greedy adaptive decomposition of signals based on nonlinear Fourier atoms[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2016, 14(3).
Authors:  Kou,Kit Ian;  Li,Hong
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.9/1.1 | Submit date:2021/03/11
Analytic Signal  Approximation  Greedy Algorithm  Nonlinear Fourier Atom  
Greedy adaptive decomposition of signals based on nonlinear Fourier atoms Journal article
Kou K.I., Li H.. Greedy adaptive decomposition of signals based on nonlinear Fourier atoms[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2016, 14(3).
Authors:  Kou K.I.;  Li H.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/13
Analytic Signal  Approximation  Greedy Algorithm  Nonlinear Fourier Atom  
Hardy space decomposition of L-p on the unit circle: 0 < p <= 1 Journal article
Hai-Chou Li, Guan-Tie Deng, Tao Qian. Hardy space decomposition of L-p on the unit circle: 0 < p <= 1[J]. Complex Variables and Elliptic Equations, 2016, 61(4), 510-523.
Authors:  Hai-Chou Li;  Guan-Tie Deng;  Tao Qian
Favorite | TC[WOS]:6 TC[Scopus]:7 | Submit date:2019/02/11
Analytic Signal  Decomposition Theorem  Hardy Space  Rational Approximation  Unit Disc  
Adaptive Fourier decompositions and rational approximations, part I: Theory Journal article
Qian T.. Adaptive Fourier decompositions and rational approximations, part I: Theory[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(5).
Authors:  Qian T.
Favorite | TC[WOS]:18 TC[Scopus]:21 | Submit date:2019/02/11
Adaptive Fourier Decomposition  Blaschke Form  Digital Signal Processing  Hardy Space  Mono-component  Möbius Transform  Rational Approximation  Rational Orthogonal System  Time-frequency Distribution  Uncertainty Principle  
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis Journal article
Qian T., Zhang L.-M.. Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis[J]. Applied Mathematics, 2013, 28(4), 505-530.
Authors:  Qian T.;  Zhang L.-M.
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:1.2/0.8 | Submit date:2019/02/11
Adaptive Fourier Decomposition  Blaschke Form  Digital Signal Processing  Hardy Space  Higher Dimensional Signal Analysis In Several Complex Variables And The Clifford Algebra settIng  Möbius Transform  Mono-component  Rational Approximation  Rational Orthogonal System  Time-frequency Distribution  Uncertainty Principle  
Nonharmonic system with greedy algorithm Conference paper
Li S., Qian T.. Nonharmonic system with greedy algorithm[C], 2011, 1424-1426.
Authors:  Li S.;  Qian T.
Favorite | TC[Scopus]:0 | Submit date:2019/02/11
Approximation  Differential Equations  Greedy Algorithm  Nonharmonic System  Signal Processing  
Optimal approximation by Blaschke forms Journal article
Qian T., Wegert E.. Optimal approximation by Blaschke forms[J]. Complex Variables and Elliptic Equations, 2011, 58(1), 123-133.
Authors:  Qian T.;  Wegert E.
Favorite | TC[WOS]:30 TC[Scopus]:33 | Submit date:2019/02/11
Adaptive Decomposition  Analytic Signal  Instantaneous Frequency  Mono-components  Rational Approximation  Rational Orthogonal System  Takenaka-malmquist System