×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [7]
Authors
JIN XIAO QING [4]
VONG SEAK WENG [3]
CHEN CHUN LUNG P... [1]
SUN HAIWEI [1]
VONG CHI MAN [1]
WAN FENG [1]
More...
Document Type
Journal article [10]
Date Issued
2023 [1]
2020 [1]
2019 [1]
2018 [1]
2016 [1]
2012 [3]
More...
Language
英語English [8]
Source Publication
Numerical Algebr... [2]
Applied Numerica... [1]
IEEE Transaction... [1]
IEEE Transaction... [1]
Journal of Compu... [1]
Linear and Multi... [1]
More...
Indexed By
SCIE [8]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 10
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
An extended Ulm-like method for inverse singular value problems with multiple and/or zero singular values
Journal article
Jinhua Wang, Weiping Shen, Chong Li, Xiaoqing Jin. An extended Ulm-like method for inverse singular value problems with multiple and/or zero singular values[J]. Journal of Computational and Applied Mathematics, 2023, 432, 115261.
Authors:
Jinhua Wang
;
Weiping Shen
;
Chong Li
;
Xiaoqing Jin
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
2.1
/
2.1
|
Submit date:2023/08/03
Inverse Singular Value Problem
Nonlinear Equation
Ulm-like Method
Common Spatial Pattern Reformulated for Regularizations in Brain-Computer Interfaces
Journal article
Wang, Boyu, Wong, Chi Man, Kang, Zhao, Liu, Feng, Shui, Changjian, Wan, Feng, Chen, C. L.Philip. Common Spatial Pattern Reformulated for Regularizations in Brain-Computer Interfaces[J]. IEEE Transactions on Cybernetics, 2020, 51(10), 5008-5020.
Authors:
Wang, Boyu
;
Wong, Chi Man
;
Kang, Zhao
;
Liu, Feng
;
Shui, Changjian
; et al.
Favorite
|
TC[WOS]:
43
TC[Scopus]:
43
IF:
9.4
/
10.3
|
Submit date:2021/12/08
Brain-computer Interface (Bci)
Common Spatial Pattern (Csp)
Generalized Eigenvalue Problem (Gep)
Least Squares
Multitask Learning
Singular Value Decomposition (Svd)
Sparse Learning
Transfer Learning
On the unsolvability of inverse singular value problems almost everywhere
Journal article
Chen,Xiao Shan, Sun,Hai Wei. On the unsolvability of inverse singular value problems almost everywhere[J]. Linear and Multilinear Algebra, 2019, 67(5), 987-994.
Authors:
Chen,Xiao Shan
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.9
/
1.0
|
Submit date:2019/05/27
Inverse Singular Value Problem
Unsolvability
Zero Singular Value
A SECOND-ORDER STOCHASTIC MAXIMUM PRINCIPLE FOR GENERALIZED MEAN-FIELD SINGULAR CONTROL PROBLEM
Journal article
Guo, Hancheng, Xiong, Jie. A SECOND-ORDER STOCHASTIC MAXIMUM PRINCIPLE FOR GENERALIZED MEAN-FIELD SINGULAR CONTROL PROBLEM[J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8(2), 451-473.
Authors:
Guo, Hancheng
;
Xiong, Jie
Favorite
|
TC[WOS]:
7
TC[Scopus]:
8
IF:
1.0
/
1.1
|
Submit date:2018/10/30
Stochastic Maximum Principle
Mean-field Control Problem
Singular Control
Frechet Derivative
Range Theorem Of Vector-valued Measures
Newton-type methods for inverse singular value problems with multiple singular values
Journal article
Shen W.-P., Li C., Jin X.-Q., Yao J.-C.. Newton-type methods for inverse singular value problems with multiple singular values[J]. Applied Numerical Mathematics, 2016, 109, 138-156.
Authors:
Shen W.-P.
;
Li C.
;
Jin X.-Q.
;
Yao J.-C.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
|
Submit date:2019/02/11
Inexact Newton-type Method
Inverse Problem
Newton-type Method
Singular Values
Positive solutions of singular fractional differential equations with integral boundary conditions
Journal article
Vong S.. Positive solutions of singular fractional differential equations with integral boundary conditions[J]. Mathematical and Computer Modelling, 2012, 57(2018-05-06), 1053.
Authors:
Vong S.
Favorite
|
TC[WOS]:
52
TC[Scopus]:
50
|
Submit date:2018/10/30
Fixed Point Theorem
Fractional Differential Equation
Positive Solution
Singular Problem
On some inverse singular value problems with toeplitz-related structure
Journal article
Bai Z.-J., Jin X.-Q., Vong S.-W.. On some inverse singular value problems with toeplitz-related structure[J]. Numerical Algebra, Control and Optimization, 2012, 2(1), 187-192.
Authors:
Bai Z.-J.
;
Jin X.-Q.
;
Vong S.-W.
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
|
Submit date:2018/12/24
Inverse Singular Value Problem
Toeplitz Matrix
Toeplitz-plus-hankel Matrix
On some inverse singular value problems with toeplitz-related structure
Journal article
Bai,Zheng Jian, Jin,Xiao Qing, Vong,Seak Weng. On some inverse singular value problems with toeplitz-related structure[J]. Numerical Algebra, Control and Optimization, 2012, 2(1), 187-192.
Authors:
Bai,Zheng Jian
;
Jin,Xiao Qing
;
Vong,Seak Weng
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
IF:
1.1
/
1.0
|
Submit date:2021/03/09
Inverse Singular Value Problem
Toeplitz Matrix
Toeplitz-plus-hankel Matrix
An Ulm-like method for inverse singular value problems
Journal article
Vong S.-W., Bai Z.-J., Jin X.-Q.. An Ulm-like method for inverse singular value problems[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(2), 412-429.
Authors:
Vong S.-W.
;
Bai Z.-J.
;
Jin X.-Q.
Favorite
|
TC[WOS]:
20
TC[Scopus]:
19
|
Submit date:2018/12/24
Inverse Singular Value Problem
Newton Method
Ulm-like Method
Incremental embedding and learning in the local discriminant subspace with application to face recognition
Journal article
Cheng M., Fang B., Tang Y.Y., Zhang T., Wen J.. Incremental embedding and learning in the local discriminant subspace with application to face recognition[J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2010, 40(5), 580-591.
Authors:
Cheng M.
;
Fang B.
;
Tang Y.Y.
;
Zhang T.
;
Wen J.
Favorite
|
TC[WOS]:
22
TC[Scopus]:
36
|
Submit date:2019/02/11
Dimensionality Reduction
Discriminant Embedding
Face Recognition
Incremental Learning
Manifold Learning
Singular Value Decomposition (Svd)
Small Sample Size (Sss) Problem