UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
A Novel Scheme Based on the Diffusion to Edge Detection Journal article
He, Yuesheng, Ni, Lionel M.. A Novel Scheme Based on the Diffusion to Edge Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28(4), 1613-1624.
Authors:  He, Yuesheng;  Ni, Lionel M.
Favorite | TC[WOS]:17 TC[Scopus]:23  IF:10.8/12.1 | Submit date:2019/01/17
Image Processing  Diffusion  Edge Detection  Sobolev Space  Bessel Potential  
Reconstruction of analytic signal in Sobolev space by framelet sampling approximation Journal article
Li, Youfa, Qian, Tao. Reconstruction of analytic signal in Sobolev space by framelet sampling approximation[J]. APPLICABLE ANALYSIS, 2018, 97(2), 194-209.
Authors:  Li, Youfa;  Qian, Tao
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.1/1.1 | Submit date:2018/10/30
Analytic Signal  Dual Framelets  Sobolev Space  Adjustable Sampling System  Approximation Order  Dnumerical Singularity  
Signal Mornents for the short-Time Fourier Transform Associated with Hardy-Sobolev Derivatives Journal article
Liu, M., Kou, K. I., Morais, J., Dang, P.. Signal Mornents for the short-Time Fourier Transform Associated with Hardy-Sobolev Derivatives[J]. mathematical Methods in the Applied Sciences, 2015, 2719-2730.
Authors:  Liu, M.;  Kou, K. I.;  Morais, J.;  Dang, P.
Favorite |   IF:0.6/0.5 | Submit date:2022/08/27
Short-time Fourier Transform  Hilbert Transform  Hardy–sobolev Space  Amplitude-phase Representation Of Signal  Instantaneous Frequency  Signal Moment  
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives Journal article
Liu M., Kou K.I., Morais J., Dang P.. Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives[J]. Mathematical Methods in the Applied Sciences, 2015, 38(13), 2719-2730.
Authors:  Liu M.;  Kou K.I.;  Morais J.;  Dang P.
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/13
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Hilbert Transform  Instantaneous Frequency  Short-time Fourier Transform  Signal Moment  
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives Journal article
Liu,M., Kou,K. I., Morais,J., Dang,P.. Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives[J]. Mathematical Methods in the Applied Sciences, 2015, 38(13), 2719-2730.
Authors:  Liu,M.;  Kou,K. I.;  Morais,J.;  Dang,P.
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.1/2.0 | Submit date:2021/03/11
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Hilbert Transform  Instantaneous Frequency  Short-time Fourier Transform  Signal Moment  
Sharper uncertainty principles for the windowed Fourier transform Journal article
Liu M.-S., Kou K.I., Morais J., Dang P.. Sharper uncertainty principles for the windowed Fourier transform[J]. Journal of Modern Optics, 2015, 62(1), 46-55.
Authors:  Liu M.-S.;  Kou K.I.;  Morais J.;  Dang P.
Favorite | TC[WOS]:7 TC[Scopus]:8 | Submit date:2019/02/13
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Heisenberg's Uncertainty Principle  Instantaneous Frequency  Signal Moment  Windowed Fourier Transform  
Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem Journal article
Mo Y., Qian T.. Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem[J]. Applied Mathematics and Computation, 2014, 245, 509-519.
Authors:  Mo Y.;  Qian T.
Favorite | TC[WOS]:10 TC[Scopus]:9 | Submit date:2019/02/11
Dirichlet Problem  Gaussian Rkhs  Reproducing Kernel  Sobolev Space  Support Vector Machine  Tikhonov Regularization  
How to catch smoothing properties and analyticity of functions by computers? Book
Castro L.P., Fujiwara H., Qian T., Saitoh S.. How to catch smoothing properties and analyticity of functions by computers?[M]. Berlin, Germany:Springer, 2014, 101-116.
Authors:  Castro L.P.;  Fujiwara H.;  Qian T.;  Saitoh S.
Favorite | TC[Scopus]:4 | Submit date:2019/02/11
Analyticity  Aveiro Discretization  Band Preserving  Multiplyprecision  Numerical Experiment  Phase Retrieval  Reproducing Kernel  Sobolev Space  
Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces Journal article
Li P., Qian T.. Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces[J]. Nonlinear Analysis, Theory, Methods and Applications, 2014, 95, 436-449.
Authors:  Li P.;  Qian T.
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/02/11
Fourier Multiplier  Hardy-sobolev Spaces  Quaternionic Space  Singular Integral  Starlike Lipschitz Surface  
Transient time-frequency distribution based on mono-component decompositions Journal article
Dang P., Qian T., Guo Y.Y.. Transient time-frequency distribution based on mono-component decompositions[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3).
Authors:  Dang P.;  Qian T.;  Guo Y.Y.
Favorite | TC[WOS]:18 TC[Scopus]:20  IF:0.9/1.1 | Submit date:2019/02/11
Time-frequency Distribution Of Signal  Hilbert Transform  Analytic Signal  Hardy Space  Hardy-sobolev Space  Instantaneous Frequency  Analytic Phase Derivaive