UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations Journal article
Huang,Yun Chi, Chou,Lot Kei, Lei,Siu Long. Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations[J]. Journal of Scientific Computing, 2023, 96(1), 29.
Authors:  Huang,Yun Chi;  Chou,Lot Kei;  Lei,Siu Long
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.8/2.7 | Submit date:2023/08/03
Alternating Direction Implicit Scheme  Divide-and-conquer  High Dimension  Tensor-train Format  Time-space Fractional Diffusion Equations  
On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations Journal article
Yuan-Yuan Huang, Wei Qu, Siu Long Lei. On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations[J]. Computers and Mathematics with Applications, 2023, 145, 124-140.
Authors:  Yuan-Yuan Huang;  Wei Qu;  Siu Long Lei
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.9/2.6 | Submit date:2023/08/03
Preconditioned Conjugate Gradient Method  Riesz Space-fractional Diffusion Equations  Spectral Analysis  Stability And Convergence  Τ-preconditioner  
A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations Journal article
Yu, Jian Wei, Zhang, Chun Hua, Huang, Xin, Wang, Xiang. A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations[J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40(1), 537-562.
Authors:  Yu, Jian Wei;  Zhang, Chun Hua;  Huang, Xin;  Wang, Xiang
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.7/0.7 | Submit date:2023/01/30
Circulant Preconditioner  Linear System  Nonlinear Space-fractional Diffusion Equations  Preconditioned Conjugated Gradient Method  Spectrum  
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations Journal article
Huang,Xin, Fang,Zhi Wei, Sun,Hai Wei, Zhang,Chun Hua. A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations[J]. Linear and Multilinear Algebra, 2022, 70(16), 3081-3096.
Authors:  Huang,Xin;  Fang,Zhi Wei;  Sun,Hai Wei;  Zhang,Chun Hua
Favorite | TC[WOS]:11 TC[Scopus]:7  IF:0.9/1.0 | Submit date:2021/03/09
Distributed-order  Space-fractional Diffusion Equations  Circulant Preconditioner  Preconditioned Conjugated Gradient Method  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Lu,Xin, Fang,Zhi Wei, Sun,Hai Wei. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2020, 66(1-2), 673–700.
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite | TC[WOS]:20 TC[Scopus]:21  IF:2.4/2.3 | Submit date:2021/03/09
Gmres Method  Riesz Space Fractional Diffusion Equations  Shifted Grünwald Discretization  Sine-transform-based Splitting Preconditioner  Symmetric Positive Definite Toeplitz Matrix  
CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS Journal article
XUE-LEI LIN, MICHAEL K. NG, HAI-WEI SUN. CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57(3), 997-1019.
Authors:  XUE-LEI LIN;  MICHAEL K. NG;  HAI-WEI SUN
Favorite | TC[WOS]:17 TC[Scopus]:17  IF:2.8/3.5 | Submit date:2019/06/10
Nonseparable Variable Coefficients  Crank–nicolson Adi Methods  Space-fractional Diffusion Equations  Unconditional Stability Analysis  
A separable preconditioner for time-space fractional Caputo-Riesz di usion equations Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A separable preconditioner for time-space fractional Caputo-Riesz di usion equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2018, 827-853.
Authors:  Lin, X.L.;  Ng, M.K.;  Sun, H. W.
Favorite |   IF:1.9/1.3 | Submit date:2022/07/25
Block lower triangular  Toeplitz-like matrix  Diagonalization  Separable  Block \epsilon-circulant preconditioner  Time-space fractional diffusion equations  
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations Journal article
Lin, Xuelei, Ng, Michael K., Sun, Haiwei. A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11(4), 827-853.
Authors:  Lin, Xuelei;  Ng, Michael K.;  Sun, Haiwei
Favorite | TC[WOS]:17 TC[Scopus]:17  IF:1.9/1.3 | Submit date:2018/10/30
Block Lower Triangular  Toeplitz-like Matrix  Diagonalization  Separable  Block Is An Element of-circulAnt Preconditioner  Time-space Fractional Diffusion Equations  
A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations Journal article
Lin,Xue Lei, Ng,Michael K., Sun,Hai Wei. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 38(4), 1580-1614.
Authors:  Lin,Xue Lei;  Ng,Michael K.;  Sun,Hai Wei
Adobe PDF | Favorite | TC[WOS]:50 TC[Scopus]:51 | Submit date:2019/05/27
Diagonal-times-toeplitz Matrices  Preconditioners  Space-fractional Diffusion Equations Krylov Subspace Methods  Variable Coecients  
A SPLITTING PRECONDITIONER FOR TOEPLITZ-LIKE LINEAR SYSTEMS ARISING FROM FRACTIONAL DIFFUSION EQUATIONS Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A SPLITTING PRECONDITIONER FOR TOEPLITZ-LIKE LINEAR SYSTEMS ARISING FROM FRACTIONAL DIFFUSION EQUATIONS[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 1580-1614.
Authors:  Lin, X.L.;  Ng, M.K.;  Sun, H. W.
Favorite | TC[WOS]:50 TC[Scopus]:51  IF:1.5/1.9 | Submit date:2022/07/25
Diagonal-times-toeplitz Matrices  Preconditioners  Variable Coeffi Cients  Space-fractional Diffusion Equations  Krylov Subspace Methods