×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scie... [11]
Authors
SUN HAIWEI [6]
LEI SIU LONG [2]
Document Type
Journal article [12]
Date Issued
2023 [3]
2022 [1]
2020 [1]
2019 [1]
2018 [2]
2017 [2]
More...
Language
英語English [12]
Source Publication
Computers and Ma... [3]
SIAM Journal on ... [2]
Japan Journal of... [1]
Journal of Appli... [1]
Journal of Scien... [1]
Linear and Multi... [1]
More...
Indexed By
SCIE [9]
CPCI-S [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 12
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations
Journal article
Huang,Yun Chi, Chou,Lot Kei, Lei,Siu Long. Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations[J]. Journal of Scientific Computing, 2023, 96(1), 29.
Authors:
Huang,Yun Chi
;
Chou,Lot Kei
;
Lei,Siu Long
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
2.8
/
2.7
|
Submit date:2023/08/03
Alternating Direction Implicit Scheme
Divide-and-conquer
High Dimension
Tensor-train Format
Time-space Fractional Diffusion Equations
On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations
Journal article
Yuan-Yuan Huang, Wei Qu, Siu Long Lei. On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations[J]. Computers and Mathematics with Applications, 2023, 145, 124-140.
Authors:
Yuan-Yuan Huang
;
Wei Qu
;
Siu Long Lei
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
IF:
2.9
/
2.6
|
Submit date:2023/08/03
Preconditioned Conjugate Gradient Method
Riesz Space-fractional Diffusion Equations
Spectral Analysis
Stability And Convergence
Τ-preconditioner
A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
Journal article
Yu, Jian Wei, Zhang, Chun Hua, Huang, Xin, Wang, Xiang. A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations[J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40(1), 537-562.
Authors:
Yu, Jian Wei
;
Zhang, Chun Hua
;
Huang, Xin
;
Wang, Xiang
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
0.7
/
0.7
|
Submit date:2023/01/30
Circulant Preconditioner
Linear System
Nonlinear Space-fractional Diffusion Equations
Preconditioned Conjugated Gradient Method
Spectrum
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
Journal article
Huang,Xin, Fang,Zhi Wei, Sun,Hai Wei, Zhang,Chun Hua. A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations[J]. Linear and Multilinear Algebra, 2022, 70(16), 3081-3096.
Authors:
Huang,Xin
;
Fang,Zhi Wei
;
Sun,Hai Wei
;
Zhang,Chun Hua
Favorite
|
TC[WOS]:
11
TC[Scopus]:
7
IF:
0.9
/
1.0
|
Submit date:2021/03/09
Distributed-order
Space-fractional Diffusion Equations
Circulant Preconditioner
Preconditioned Conjugated Gradient Method
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations
Journal article
Lu,Xin, Fang,Zhi Wei, Sun,Hai Wei. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2020, 66(1-2), 673–700.
Authors:
Lu,Xin
;
Fang,Zhi Wei
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
20
TC[Scopus]:
21
IF:
2.4
/
2.3
|
Submit date:2021/03/09
Gmres Method
Riesz Space Fractional Diffusion Equations
Shifted Grünwald Discretization
Sine-transform-based Splitting Preconditioner
Symmetric Positive Definite Toeplitz Matrix
CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS
Journal article
XUE-LEI LIN, MICHAEL K. NG, HAI-WEI SUN. CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57(3), 997-1019.
Authors:
XUE-LEI LIN
;
MICHAEL K. NG
;
HAI-WEI SUN
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
IF:
2.8
/
3.5
|
Submit date:2019/06/10
Nonseparable Variable Coefficients
Crank–nicolson Adi Methods
Space-fractional Diffusion Equations
Unconditional Stability Analysis
A separable preconditioner for time-space fractional Caputo-Riesz di usion equations
Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A separable preconditioner for time-space fractional Caputo-Riesz di usion equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2018, 827-853.
Authors:
Lin, X.L.
;
Ng, M.K.
;
Sun, H. W.
Favorite
|
IF:
1.9
/
1.3
|
Submit date:2022/07/25
Block lower triangular
Toeplitz-like matrix
Diagonalization
Separable
Block \epsilon-circulant preconditioner
Time-space fractional diffusion equations
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations
Journal article
Lin, Xuelei, Ng, Michael K., Sun, Haiwei. A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11(4), 827-853.
Authors:
Lin, Xuelei
;
Ng, Michael K.
;
Sun, Haiwei
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
IF:
1.9
/
1.3
|
Submit date:2018/10/30
Block Lower Triangular
Toeplitz-like Matrix
Diagonalization
Separable
Block Is An Element of-circulAnt Preconditioner
Time-space Fractional Diffusion Equations
A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations
Journal article
Lin,Xue Lei, Ng,Michael K., Sun,Hai Wei. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 38(4), 1580-1614.
Authors:
Lin,Xue Lei
;
Ng,Michael K.
;
Sun,Hai Wei
Adobe PDF
|
Favorite
|
TC[WOS]:
50
TC[Scopus]:
51
|
Submit date:2019/05/27
Diagonal-times-toeplitz Matrices
Preconditioners
Space-fractional Diffusion Equations Krylov Subspace Methods
Variable Coecients
A SPLITTING PRECONDITIONER FOR TOEPLITZ-LIKE LINEAR SYSTEMS ARISING FROM FRACTIONAL DIFFUSION EQUATIONS
Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A SPLITTING PRECONDITIONER FOR TOEPLITZ-LIKE LINEAR SYSTEMS ARISING FROM FRACTIONAL DIFFUSION EQUATIONS[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 1580-1614.
Authors:
Lin, X.L.
;
Ng, M.K.
;
Sun, H. W.
Favorite
|
TC[WOS]:
50
TC[Scopus]:
51
IF:
1.5
/
1.9
|
Submit date:2022/07/25
Diagonal-times-toeplitz Matrices
Preconditioners
Variable Coeffi Cients
Space-fractional Diffusion Equations
Krylov Subspace Methods