UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
Adaptive spectrum amplitude modulation method for rolling bearing fault frequency determination Journal article
Tu, Zhaoyu, Luo, Zeyu, Li, Menghui, Wang, Jun, Yang, Zhi Xin, Wang, Xianbo. Adaptive spectrum amplitude modulation method for rolling bearing fault frequency determination[J]. Measurement Science and Technology, 2024, 35(11), 116108.
Authors:  Tu, Zhaoyu;  Luo, Zeyu;  Li, Menghui;  Wang, Jun;  Yang, Zhi Xin; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.7/2.4 | Submit date:2024/09/03
Adaptive Filter  Fault Frequency Determination  Magnitude Order  Sparse Stacked Autoencoder  Spectral Amplitude Modulation  
Multilayer Stacked Evolving Fuzzy System Combined With Compressed Representation Learning Journal article
Huang, Hui, Rong, Hai Jun, Yang, Zhao Xu, Vong, Chi Man. Multilayer Stacked Evolving Fuzzy System Combined With Compressed Representation Learning[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(4), 2223-2234.
Authors:  Huang, Hui;  Rong, Hai Jun;  Yang, Zhao Xu;  Vong, Chi Man
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:10.7/9.7 | Submit date:2024/05/02
Evolving Fuzzy System (Efs)  Representation Learning  Stacked Autoencoder  Very Sparse Random Projection  
SPRBF-ABLS: a novel attention-based broad learning systems with sparse polynomial-based radial basis function neural networks Journal article
Wang, Jing, Lyu, Shubin, Chen, C. L.Philip, Zhao, Huimin, Lin, Zhengchun, Quan, Pingsheng. SPRBF-ABLS: a novel attention-based broad learning systems with sparse polynomial-based radial basis function neural networks[J]. Journal of Intelligent Manufacturing, 2022, 34(4), 1779-1794.
Authors:  Wang, Jing;  Lyu, Shubin;  Chen, C. L.Philip;  Zhao, Huimin;  Lin, Zhengchun; et al.
Favorite | TC[WOS]:6 TC[Scopus]:8  IF:5.9/6.4 | Submit date:2022/08/05
Attention Mechanism  Broad Learning System  Polynomial-based Rbf Neural Network  Sparse Autoencoder  
Low Rank Based Discriminative Least Squares Regression with Sparse Autoencoder Processing for Image Classification Conference paper
Qi Zhang, Bob Zhang. Low Rank Based Discriminative Least Squares Regression with Sparse Autoencoder Processing for Image Classification[C]:IEEE, 2021, 836 - 840.
Authors:  Qi Zhang;  Bob Zhang
Favorite | TC[Scopus]:4 | Submit date:2022/05/13
Image Classification  Least Square Regression  Low Rank  Sparse Autoencoder  
A Noninvasive Method to Detect Diabetes Mellitus and Lung Cancer Using the Stacked Sparse autoencoder Conference paper
Qi Zhang, Jianhang Zhou, Bob Zhang. A Noninvasive Method to Detect Diabetes Mellitus and Lung Cancer Using the Stacked Sparse autoencoder[C]:IEEE, 2020, 1409-1413.
Authors:  Qi Zhang;  Jianhang Zhou;  Bob Zhang
Favorite | TC[WOS]:9 TC[Scopus]:12 | Submit date:2021/03/11
Diabetes Mellitus  Lung Cancer  Facial Image  Medical Biometrics  Stacked Sparse Autoencoder  
An Enhanced Hierarchical Extreme Learning Machine with Random Sparse Matrix Based Autoencoder Conference paper
Tianlei Wang, Xiaoping Lai, Jiuwen Cao, Chi-Man Vong, Badong Chen. An Enhanced Hierarchical Extreme Learning Machine with Random Sparse Matrix Based Autoencoder[C]:IEEE, 2019, 3817-3821.
Authors:  Tianlei Wang;  Xiaoping Lai;  Jiuwen Cao;  Chi-Man Vong;  Badong Chen
Favorite | TC[WOS]:11 TC[Scopus]:14 | Submit date:2021/03/11
Autoencoder  Extreme Learning Machine  Multilayer Perceptron  Random Sparse Matrix  
Distribution Preserving Network Embedding Conference paper
Anyong Qin, Zhaowei Shang, Taiping Zhang, Yuan Yan Tang. Distribution Preserving Network Embedding[C]:IEEE, 2019, 3562-3566.
Authors:  Anyong Qin;  Zhaowei Shang;  Taiping Zhang;  Yuan Yan Tang
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2022/05/17
Clustering  Distribution Preserving  Manifold Structure  Part-based Representation  Sparse Autoencoder  
Unsupervised Learning 3-D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy- Journal article
Han, Z. Z., Liu, Z. B., Han, J. W., Vong, C. M., Bu, S. H., Chen, C. L. P.. Unsupervised Learning 3-D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy-[J]. IEEE Transactions on Cybernetics (SCI-E) (Accepted for Publication), 2019, 2168-2267.
Authors:  Han, Z. Z.;  Liu, Z. B.;  Han, J. W.;  Vong, C. M.;  Bu, S. H.; et al.
Favorite |  | Submit date:2022/08/09
3-D local features  3-D voxelization  deep learning  stacked sparse autoencoder (SSAE)  unsupervised feature learning  
Unsupervised Learning 3D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy Journal article
Zhizhong Han, Zhenbao Liu, Junwei Han, Chi-Man Vong, Shuhui Bu, C. L. Philip Chen. Unsupervised Learning 3D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy[J]. IEEE TRANSACTIONS ON CYBERNETIC, 2019, 49(2), 481 - 494.
Authors:  Zhizhong Han;  Zhenbao Liu;  Junwei Han;  Chi-Man Vong;  Shuhui Bu; et al.
Favorite | TC[WOS]:31 TC[Scopus]:0  IF:9.4/10.3 | Submit date:2019/04/29
3-d Local Features  3-d Voxelization  Deep Learning  Stacked Sparse Autoencoder (Ssae)  Unsupervised Feature Learning  
Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy Journal article
Han Z., Liu Z., Han J., Vong C.-M., Bu S., Chen C.L.P.. Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy[J]. IEEE Transactions on Cybernetics, 2019, 49(2), 481-494.
Authors:  Han Z.;  Liu Z.;  Han J.;  Vong C.-M.;  Bu S.; et al.
Favorite | TC[WOS]:31 TC[Scopus]:31  IF:9.4/10.3 | Submit date:2019/02/11
3-d Local Features  3-d Voxelization  Deep Learning  Stacked Sparse Autoencoder (Ssae)  Unsupervised Feature Learning