×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
THE STATE KEY LA... [1]
Authors
GONG ZHIGUO [1]
YANG DINGQI [1]
WANG PENGYANG [1]
Document Type
Journal article [4]
Conference paper [1]
Date Issued
2024 [1]
2022 [3]
2016 [1]
Language
英語English [5]
Source Publication
APPLIED INTELLIG... [1]
IEEE Signal Proc... [1]
IEEE TRANSACTION... [1]
INFORMATION SCIE... [1]
Proceedings of t... [1]
Indexed By
SCIE [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation
Conference paper
Zhang, Zhaofan, Xiao, Yanan, Jiang, Lu, Yang, Dingqi, Yin, Minghao, Wang, Pengyang. Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation[C], 2024, 9396-9404.
Authors:
Zhang, Zhaofan
;
Xiao, Yanan
;
Jiang, Lu
;
Yang, Dingqi
;
Yin, Minghao
; et al.
Favorite
|
TC[Scopus]:
5
|
Submit date:2024/05/16
Dmkm: Mining Of Spatial
TempOral Or spatio-TempOral Data
Dmkm: Recommender Systems
Multi-mode dynamic residual graph convolution network for traffic flow prediction
Journal article
Huang, Xiaohui, Ye, Yuming, Ding, Weihua, Yang, Xiaofei, Xiong, Liyan. Multi-mode dynamic residual graph convolution network for traffic flow prediction[J]. INFORMATION SCIENCES, 2022, 609, 548-564.
Authors:
Huang, Xiaohui
;
Ye, Yuming
;
Ding, Weihua
;
Yang, Xiaofei
;
Xiong, Liyan
Favorite
|
TC[WOS]:
21
TC[Scopus]:
23
IF:
0
/
0
|
Submit date:2022/08/02
Graph Convolution Network
Multi-mode Fusion
Spatio-temporal Data
Traffic Flow Prediction
A time-dependent attention convolutional LSTM method for traffic flow prediction
Journal article
Xiaohui Huang, Jie Tang, Xiaofei Yang, Liyan Xiong. A time-dependent attention convolutional LSTM method for traffic flow prediction[J]. APPLIED INTELLIGENCE, 2022, 52(15), 17371–17386.
Authors:
Xiaohui Huang
;
Jie Tang
;
Xiaofei Yang
;
Liyan Xiong
Favorite
|
TC[WOS]:
10
TC[Scopus]:
11
IF:
3.4
/
3.9
|
Submit date:2022/05/17
Attention Mechanism
Convolutional Lstm
Spatio-temporal Data
Traffic Flow Prediction
Shortening passengers' travel time: A dynamic metro train scheduling approach using deep reinforcement learning
Journal article
Wang, Zhaoyuan, Pan, Zheyi, Chen, Shun, Ji, Shenggong, Yi, Xiuwen, Zhang, Junbo, Wang, Jingyuan, Gong, Zhiguo, Li, Tianrui, Zheng, Yu. Shortening passengers' travel time: A dynamic metro train scheduling approach using deep reinforcement learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 35(5), 5282-5295.
Authors:
Wang, Zhaoyuan
;
Pan, Zheyi
;
Chen, Shun
;
Ji, Shenggong
;
Yi, Xiuwen
; et al.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
3
IF:
8.9
/
8.8
|
Submit date:2022/05/17
Metro Systems
Spatio-temporal Data
Neural Network
Deep Reinforcement Learning
Urban Computing
Person Re-identification by Exploiting Spatio-Temporal Cues and Multi-view Metric Learning
Journal article
Jiaxin Chen, Yunhong Wang, Yuan Yan Tang. Person Re-identification by Exploiting Spatio-Temporal Cues and Multi-view Metric Learning[J]. IEEE Signal Processing Letters, 2016, 23(7), 998 - 1002.
Authors:
Jiaxin Chen
;
Yunhong Wang
;
Yuan Yan Tang
Favorite
|
TC[WOS]:
27
TC[Scopus]:
31
IF:
3.2
/
3.4
|
Submit date:2018/10/30
Metric Learning
Multi-view Data Fusion
Person Re-identification
Spatio-temporal Representation