UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Risk-sensitive infinite-horizon discounted piecewise deterministic Markov decision processes Journal article
Huang, Yonghui, Lian, Zhaotong, Guo, Xianping. Risk-sensitive infinite-horizon discounted piecewise deterministic Markov decision processes[J]. Operational Research, 2022, 22(5), 5791-5816.
Authors:  Huang, Yonghui;  Lian, Zhaotong;  Guo, Xianping
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.3/2.4 | Submit date:2022/08/05
Discounted Cost  Hjb Equation  Non-stationarity  Piecewise Deterministic Markov Decision Processes  Risk Sensitive  
Constrained Variable Projection Optimization for Stationary RBF-AR Models Journal article
Chen, Jia, Gan, Min, Chen, Guang Yong, Chen, C. L.Philip. Constrained Variable Projection Optimization for Stationary RBF-AR Models[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(3), 1882-1890.
Authors:  Chen, Jia;  Gan, Min;  Chen, Guang Yong;  Chen, C. L.Philip
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:8.6/8.7 | Submit date:2022/03/28
Constrained Evolutionary Algorithm (Cea)  Prediction  Radial Basis Function Network-based Autoregressive (Rbf-ar) Model  Stationarity  Variable Projection  
Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity Journal article
Li Dong, Jiantao Zhou, Yuan Yan Tang. Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity[J]. IEEE Transactions on Image Processing, 2016, 26(2), 1017-1030.
Authors:  Li Dong;  Jiantao Zhou;  Yuan Yan Tang
Adobe PDF | Favorite | TC[WOS]:38 TC[Scopus]:48  IF:10.8/12.1 | Submit date:2021/03/11
Noise Level Estimation  Scale Invariant Feature  Kurtosis  Piecewise Stationarity  
Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise Journal article
Li M., Zhao W.. Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(24), 6268.
Authors:  Li M.;  Zhao W.
Favorite | TC[WOS]:30 TC[Scopus]:31 | Submit date:2018/10/30
Autocorrelation Function  Hölder Exponent  Locally Weak Stationarity  Modified Multifractional Gaussian Noise