×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [9]
Authors
HU GUANGHUI [8]
Document Type
Journal article [13]
Conference paper [1]
Date Issued
2024 [1]
2022 [1]
2021 [1]
2018 [3]
2017 [3]
2016 [4]
More...
Language
英語English [14]
Source Publication
Journal of Compu... [5]
Communications i... [2]
Computers & Flui... [2]
East Asian Journ... [2]
Communications o... [1]
JOURNAL OF COMPU... [1]
More...
Indexed By
SCIE [7]
ESCI [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 14
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Towards the Efficient Calculation of Quantity of Interest from Steady Euler Equations I: A Dual-Consistent DWR-Based h-Adaptive Newton-GMG Solver
Journal article
Wang, Jingfeng, Hu, Guanghui. Towards the Efficient Calculation of Quantity of Interest from Steady Euler Equations I: A Dual-Consistent DWR-Based h-Adaptive Newton-GMG Solver[J]. Communications in Computational Physics, 2024, 35(3), 579-608.
Authors:
Wang, Jingfeng
;
Hu, Guanghui
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
2.6
/
2.9
|
Submit date:2024/05/16
Dual Consistency
Dwr-based Adaptation
Finite Volume Method
Hadaptivity
Newton-gmg
Steady Euler Equations
A NURBS-Enhanced Finite Volume Method for Steady Euler Equations with Goal-Oriented h-Adaptivity
Journal article
Meng, Xucheng, Hu, Guanghui. A NURBS-Enhanced Finite Volume Method for Steady Euler Equations with Goal-Oriented h-Adaptivity[J]. Communications in Computational Physics, 2022, 32(2), 490-523.
Authors:
Meng, Xucheng
;
Hu, Guanghui
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
2.6
/
2.9
|
Submit date:2022/08/30
Steady Euler Equations
Nurbs-enhanced Finite Volume Method
Goal-oriented a Posteriori Error Estimation
Non-oscillatory K-exact Reconstruction
Point Inversion
A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries
Journal article
Meng, Xucheng, Gu, Yaguang, Hu, Guanghui. A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries[J]. Communications on Applied Mathematics and Computation, 2021, 5(1), 315-342.
Authors:
Meng, Xucheng
;
Gu, Yaguang
;
Hu, Guanghui
Favorite
|
TC[WOS]:
6
TC[Scopus]:
3
IF:
1.4
/
0
|
Submit date:2022/08/31
Steady Euler Equations
Curved Boundary
Nurbs-enhanced Finite Volume Method
Weno Reconstruction
Secondary Reconstruction
A NURBS-enhanced finite volume solver for steady Euler equations
Journal article
MENG XUCHENG, HU GUANGHUI. A NURBS-enhanced finite volume solver for steady Euler equations[J]. Journal of Computational Physics, 2018, 77-92.
Authors:
MENG XUCHENG
;
HU GUANGHUI
Favorite
|
IF:
3.8
/
4.5
|
Submit date:2024/08/31
Nurbs
Curve Fitting
Steady Euler Equations
Non-oscillatory $k$-exact Reconstruction
Finite Volume Method
A NURBS-enhanced finite volume solver for steady Euler equations
Journal article
Meng, Xucheng, Hu, Guanghui. A NURBS-enhanced finite volume solver for steady Euler equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 359, 77-92.
Authors:
Meng, Xucheng
;
Hu, Guanghui
Favorite
|
TC[WOS]:
11
TC[Scopus]:
10
IF:
3.8
/
4.5
|
Submit date:2018/10/30
Nurbs
Curve Fitting
Steady Euler Equations
Non-oscillatory K-exact Reconstruction
Finite Volume Method
A NURBS-enhanced finite volume solver for steady Euler equations
Journal article
Meng,Xucheng, Hu,Guanghui. A NURBS-enhanced finite volume solver for steady Euler equations[J]. Journal of Computational Physics, 2018, 359, 77-92.
Authors:
Meng,Xucheng
;
Hu,Guanghui
Favorite
|
TC[WOS]:
11
TC[Scopus]:
10
IF:
3.8
/
4.5
|
Submit date:2021/03/11
Curve Fitting
Finite Volume Method
Non-oscillatory K-exact Reconstruction
Nurbs
Steady Euler Equations
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields
Conference paper
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[C], EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND:CAMBRIDGE UNIV PRESS, 2017, 697-713.
Authors:
Gao, Zhen
;
Hu, Guanghui
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
|
Submit date:2018/10/30
Euler Equations
Gravitational Fields
Source Term
Steady State Solution
Weighted Compact
Nonlinear Scheme
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields
Journal article
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[J]. East Asian Journal on Applied Mathematics, 2017, 7(4), 697-713.
Authors:
Gao, Zhen
;
Hu, Guanghui
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
|
Submit date:2019/02/13
Euler Equations
Gravitational Fields
Source Term
Steady State Solution
Weighted Compact Nonlinear Scheme
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields
Journal article
Gao,Zhen, Hu,Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[J]. East Asian Journal on Applied Mathematics, 2017, 7(4), 697-713.
Authors:
Gao,Zhen
;
Hu,Guanghui
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
1.2
/
1.0
|
Submit date:2021/03/11
Euler Equations
Gravitational Fields
Source Term
Steady State Solution
Weighted Compact Nonlinear Scheme
Adjoint-based an adaptive finite volume method for steady Euler equations with non-oscillatory k-exact reconstruction
Journal article
Hu, Guanghui, Meng, Xucheng, Yi, Nianyu. Adjoint-based an adaptive finite volume method for steady Euler equations with non-oscillatory k-exact reconstruction[J]. Computers & Fluids, 2016, 139, 174-183.
Authors:
Hu, Guanghui
;
Meng, Xucheng
;
Yi, Nianyu
Favorite
|
TC[WOS]:
21
TC[Scopus]:
19
|
Submit date:2019/02/13
Adjoint-based Error Estimation
H-adaptive Method
High Order Finite Volume Methods
Non-oscillatory K-exact Reconstruction
Steady Euler Equations