UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
RAN: Region-Aware Network for Remote Sensing Image Super-Resolution Journal article
Liu, Baodi, Zhao, Lifei, Shao, Shuai, Liu, Weifeng, Tao, Dapeng, Cao, Weijia, Zhou, Yicong. RAN: Region-Aware Network for Remote Sensing Image Super-Resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5408113.
Authors:  Liu, Baodi;  Zhao, Lifei;  Shao, Shuai;  Liu, Weifeng;  Tao, Dapeng; et al.
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:7.5/7.6 | Submit date:2024/02/22
Attention Mechanism  Contrastive Learning  Graph Neural Network  Remote Sensing (Rs) Image Super-resolution (Sr)  
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention Conference paper
Zhou,Lin, Cai,Haoming, Gu,Jinjin, Li,Zheyuan, Liu,Yingqi, Chen,Xiangyu, Qiao,Yu, Dong,Chao. Efficient Image Super-Resolution Using Vast-Receptive-Field Attention[C]. Tomer Michaeli, Leonid Karlinsky, Ko Nishino:Springer Science and Business Media Deutschland GmbH, 2023, 256-272.
Authors:  Zhou,Lin;  Cai,Haoming;  Gu,Jinjin;  Li,Zheyuan;  Liu,Yingqi; et al.
Favorite | TC[Scopus]:41 | Submit date:2023/08/03
Attention Mechanism  Deep Convolution Network  Image Super-resolution  
High-Accuracy CSI Feedback with Super-Resolution Network for Massive MIMO Systems Journal article
Chen, Xiaohong, Deng, Changxing, Zhou, Binggui, Zhang, Huan, Yang, Guanghua, Ma, Shaodan. High-Accuracy CSI Feedback with Super-Resolution Network for Massive MIMO Systems[J]. IEEE Wireless Communications Letters, 2022, 11(1), 141-145.
Authors:  Chen, Xiaohong;  Deng, Changxing;  Zhou, Binggui;  Zhang, Huan;  Yang, Guanghua; et al.
Favorite | TC[WOS]:11 TC[Scopus]:17  IF:4.6/4.9 | Submit date:2022/02/21
Csi Feedback  Deep Learning  Massive Mimo  Super-resolution Network  
Saliency-guided remote sensing image super-resolution Journal article
Liu, Baodi, Zhao, Lifei, Li, Jiaoyue, Zhao, Hengle, Liu, Weifeng, Li, Ye, Wang, Yanjiang, Chen, Honglong, Cao, Weijia. Saliency-guided remote sensing image super-resolution[J]. Remote Sensing, 2021, 13(24).
Authors:  Liu, Baodi;  Zhao, Lifei;  Li, Jiaoyue;  Zhao, Hengle;  Liu, Weifeng; et al.
Favorite | TC[WOS]:14 TC[Scopus]:16  IF:4.2/4.9 | Submit date:2022/01/14
Generative Adversarial Network  Image Super-resolution  Remote Sensing Image  Salient Object Detection  
Coarse-to-Fine CNN for Image Super-Resolution Journal article
Tian, Chunwei, Xu, Yong, Zuo, Wangmeng, Zhang, Bob, Fei, Lunke, Lin, Chia Wen. Coarse-to-Fine CNN for Image Super-Resolution[J]. IEEE Transactions on Multimedia, 2021, 23, 1489-1502.
Authors:  Tian, Chunwei;  Xu, Yong;  Zuo, Wangmeng;  Zhang, Bob;  Fei, Lunke; et al.
Favorite | TC[WOS]:142 TC[Scopus]:160  IF:8.4/8.0 | Submit date:2022/05/13
Cascaded Structure  Convolutional Neural Network  Feature Fusion  Feature Refinement  Image Super-resolution  
Efficient residual attention network for single image super-resolution Journal article
Hao, Fangwei, Zhang, Taiping, Zhao, Linchang, Tang, Yuanyan. Efficient residual attention network for single image super-resolution[J]. Applied Intelligence, 2021, 52(1), 652-661.
Authors:  Hao, Fangwei;  Zhang, Taiping;  Zhao, Linchang;  Tang, Yuanyan
Favorite | TC[WOS]:10 TC[Scopus]:11  IF:3.4/3.9 | Submit date:2022/02/22
Channel Hourglass Residual Structure  Efficient Channel Attention Mechanism  Efficient Residual Attention Network  Image Super-resolution  
Mixed high-order non-local attention network for single image super-resolution Journal article
Du, Xiaobiao, Jiang, Saibiao, Si, Yujuan, Xu, Lina, Liu, Chongjin. Mixed high-order non-local attention network for single image super-resolution[J]. IEEE Access, 2021, 9, 49514-49521.
Authors:  Du, Xiaobiao;  Jiang, Saibiao;  Si, Yujuan;  Xu, Lina;  Liu, Chongjin
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:3.4/3.7 | Submit date:2022/05/13
Deep Learning  Deep Neural Network  Super Resolution  
Fusing multi-scale information in convolution network for MR image super-resolution reconstruction Journal article
Liu, Chang, Wu, Xi, Yu, Xi, Tang, YuanYan, Zhang, Jian, Zhou, JiLiu. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction[J]. BIOMEDICAL ENGINEERING ONLINE, 2018, 17.
Authors:  Liu, Chang;  Wu, Xi;  Yu, Xi;  Tang, YuanYan;  Zhang, Jian; et al.
Favorite | TC[WOS]:29 TC[Scopus]:31  IF:2.9/3.5 | Submit date:2018/10/30
Super-resolution Reconstruction  Multi-scale Information Fusion  Convolution Network  Magnetic Resonance Imaging  
Super resolution reconstruction of brain MR image based on convolution sparse network Conference paper
Liu C., Wu X., Tang Y.Y., Yu X., Zhao W., Zhang L.. Super resolution reconstruction of brain MR image based on convolution sparse network[C], 2017, 275-278.
Authors:  Liu C.;  Wu X.;  Tang Y.Y.;  Yu X.;  Zhao W.; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2019/02/11
Convolution Neural Network  Magnetic Resonance Image  Super Resolution Reconstruction  
Image-analogies based super resolution Journal article
Gu Y.-T., Wu E.-H.. Image-analogies based super resolution[J]. Ruan Jian Xue Bao/Journal of Software, 2008, 19(4), 851-860.
Authors:  Gu Y.-T.;  Wu E.-H.
Favorite | TC[Scopus]:10 | Submit date:2019/02/13
Image Analogies  Markov Network  Super Resolution