UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Weakly Supervised Semantic Segmentation via Dual-Stream Contrastive Learning of Cross-Image Contextual Information Journal article
Lai, Qi, Vong, Chi Man, Chen, Chuangquan. Weakly Supervised Semantic Segmentation via Dual-Stream Contrastive Learning of Cross-Image Contextual Information[J]. IEEE Transactions on Industrial Informatics, 2024, 20(10), 11635-11643.
Authors:  Lai, Qi;  Vong, Chi Man;  Chen, Chuangquan
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:11.7/11.4 | Submit date:2024/07/04
Contrastive Learning  Cross-image Contextual Information  Dual-stream Framework  Weakly Supervised Semantic Segmentation (Wsss)  
Semi-supervised vanishing point detection with contrastive learning Journal article
Yukun Wang, Shuo Gu, Yinbo Liu, KONG HUI. Semi-supervised vanishing point detection with contrastive learning[J]. Pattern Recognition, 2024, 153, 110518.
Authors:  Yukun Wang;  Shuo Gu;  Yinbo Liu;  KONG HUI
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:7.5/7.6 | Submit date:2024/05/14
Vanishing Point Detection  Semi-supervised Learning  Contrastive Learning  
Towards Precise Weakly Supervised Object Detection via Interactive Contrastive Learning of Context Information Journal article
Lai, Qi, Vong, Chi Man, Shi, Sai Qi, Chen, C. L.Philip. Towards Precise Weakly Supervised Object Detection via Interactive Contrastive Learning of Context Information[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024.
Authors:  Lai, Qi;  Vong, Chi Man;  Shi, Sai Qi;  Chen, C. L.Philip
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:5.3/5.7 | Submit date:2024/10/10
Context Information  Weakly Supervised Object Detection  Graph Contrastive Learning  Interactive Framework  
SCDet: decoupling discriminative representation for dark object detection via supervised contrastive learning Journal article
Lin, Tongxu, Huang, Guoheng, Yuan, Xiaochen, Zhong, Guo, Huang, Xiaocong, Pun, Chi Man. SCDet: decoupling discriminative representation for dark object detection via supervised contrastive learning[J]. Visual Computer, 2024, 40(5), 3357-3369.
Authors:  Lin, Tongxu;  Huang, Guoheng;  Yuan, Xiaochen;  Zhong, Guo;  Huang, Xiaocong; et al.
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:3.0/3.0 | Submit date:2024/02/23
Low-light Environment  Dark Object Detection  Supervised Contrastive Learning  Representation Decoupling  
Reformulating Graph Kernels for Self-Supervised Space-Time Correspondence Learning Journal article
Qin, Zheyun, Lu, Xiankai, Liu, Dongfang, Nie, Xiushan, Yin, Yilong, Shen, Jianbing, Loui, Alexander C.. Reformulating Graph Kernels for Self-Supervised Space-Time Correspondence Learning[J]. IEEE Transactions on Image Processing, 2023, 32, 6543-6557.
Authors:  Qin, Zheyun;  Lu, Xiankai;  Liu, Dongfang;  Nie, Xiushan;  Yin, Yilong; et al.
Favorite | TC[WOS]:9 TC[Scopus]:14  IF:10.8/12.1 | Submit date:2024/02/22
Contrastive Learning  Correspondence Learning  Graph Kernels  Label Propagation  Self-supervised Learning  
Improving Few-Shot Image Classification with Self-supervised Learning Conference paper
Deng, Shisheng, Liao, Dongping, Gao, Xitong, Zhao, Juanjuan, Ye, Kejiang. Improving Few-Shot Image Classification with Self-supervised Learning[C]. Ye K., Zhang L.-J.:Springer Science and Business Media Deutschland GmbH, 2022, 54-68.
Authors:  Deng, Shisheng;  Liao, Dongping;  Gao, Xitong;  Zhao, Juanjuan;  Ye, Kejiang
Favorite | TC[Scopus]:4 | Submit date:2023/03/06
Few-shot Image Classification  Self-supervised Learning  Contrastive Learning