UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM (Extended abstract) Conference paper
Chan, Tsz Nam, Li, Zhe, Leong Hou, U., Cheng, Reynold. PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM (Extended abstract)[C]:IEEE Computer Society, 2024, 5685-5686.
Authors:  Chan, Tsz Nam;  Li, Zhe;  Leong Hou, U.;  Cheng, Reynold
Favorite | TC[Scopus]:0 | Submit date:2024/09/03
Additive Kernel  Plame  Svm  
Semi-supervised multi-Layer convolution kernel learning in credit evaluation Journal article
Xu, Lixiang, Cui, Lixin, Weise, Thomas, Li, Xinlu, Wu, Zhize, Nie, Feiping, Chen, Enhong, Tang, Yuanyan. Semi-supervised multi-Layer convolution kernel learning in credit evaluation[J]. PATTERN RECOGNITION, 2021, 120, 108125.
Authors:  Xu, Lixiang;  Cui, Lixin;  Weise, Thomas;  Li, Xinlu;  Wu, Zhize; et al.
Favorite | TC[WOS]:12 TC[Scopus]:14  IF:7.5/7.6 | Submit date:2021/12/09
Convolution Kernel Function  Multi-layer Kernel  Random Sampling  Semi-supervised Learning  Svm  
Classification of Complex Power Quality Disturbances Using Optimized S-Transform and Kernel SVM Journal article
Tang, Qiu, Qiu, Wei, Zhou, Yicong. Classification of Complex Power Quality Disturbances Using Optimized S-Transform and Kernel SVM[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67(11), 9715-9723.
Authors:  Tang, Qiu;  Qiu, Wei;  Zhou, Yicong
Favorite | TC[WOS]:83 TC[Scopus]:105  IF:7.5/8.0 | Submit date:2021/12/06
Kernel Support Vector Machine (Svm)  Nonlinearly Mixed Power Quality Disturbance (Pqd)  Optimized S-transform (Ost)  Time-frequency Resolution  
Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification Journal article
Peng Jiangtao, Zhou Yicong, Chen C.L.P.. Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9), 4810 - 4824.
Authors:  Peng Jiangtao;  Zhou Yicong;  Chen C.L.P.
Favorite | TC[WOS]:131 TC[Scopus]:146 | Submit date:2018/10/30
Composite Kernel  Hyperspectral Image (Hsi) Classification  Region Kernel  Support Vector Machine (Svm)  
Effect of choice of kernel in support vector machines on ambient air pollution forecasting Conference paper
Yang J.Y., Ip W.F., Vong C.M., Wong, Pak Kin. Effect of choice of kernel in support vector machines on ambient air pollution forecasting[C], 2011, 552-557.
Authors:  Yang J.Y.;  Ip W.F.;  Vong C.M.;  Wong, Pak Kin
Favorite | TC[Scopus]:7 | Submit date:2019/02/13
Pollution Level Forecasting  Support Vector Machines  Svm Kernel  
Optimization of combined kernel function for SVM by particle swarm optimization Conference paper
Lu M.-Z., Chen C.L.P., Huo J.-B.. Optimization of combined kernel function for SVM by particle swarm optimization[C], 2009, 1160-1166.
Authors:  Lu M.-Z.;  Chen C.L.P.;  Huo J.-B.
Favorite | TC[WOS]:3 TC[Scopus]:10 | Submit date:2019/02/11
Combined Kernel Function  Large Margin Learning  Particle Swarm Optimization  Svm  Swarm Intelligence  
Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines Journal article
Wong, Pak Kin, Vong, Chi Man, Tam, Lap Mou, Li, Ke. Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines[J]. International Journal of Vehicle Systems Modelling and Testing, 2009, 3(4), 312-330.
Authors:  Wong, Pak Kin;  Vong, Chi Man;  Tam, Lap Mou;  Li, Ke
Favorite | TC[Scopus]:15 | Submit date:2018/10/30
Least Squares Support Vector Machines  Kernel Principal Components Analysis  Automotive Engine Power Performance Model  Kpca  Ls-svm  
Optimization of combined kernel function for SVM based on large margin learning theory Conference paper
Lu M., Chen C.L.P., Huo J., Wang X.. Optimization of combined kernel function for SVM based on large margin learning theory[C], 2008, 353-358.
Authors:  Lu M.;  Chen C.L.P.;  Huo J.;  Wang X.
Favorite | TC[WOS]:5 TC[Scopus]:10 | Submit date:2019/02/11
Combined Kernel Function  Genetic Algorithm  Large Margin Learning  Optimization  Svm