UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations Journal article
Huang,Yun Chi, Chou,Lot Kei, Lei,Siu Long. Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations[J]. Journal of Scientific Computing, 2023, 96(1), 29.
Authors:  Huang,Yun Chi;  Chou,Lot Kei;  Lei,Siu Long
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.8/2.7 | Submit date:2023/08/03
Alternating Direction Implicit Scheme  Divide-and-conquer  High Dimension  Tensor-train Format  Time-space Fractional Diffusion Equations  
A separable preconditioner for time-space fractional Caputo-Riesz di usion equations Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. A separable preconditioner for time-space fractional Caputo-Riesz di usion equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2018, 827-853.
Authors:  Lin, X.L.;  Ng, M.K.;  Sun, H. W.
Favorite |   IF:1.9/1.3 | Submit date:2022/07/25
Block lower triangular  Toeplitz-like matrix  Diagonalization  Separable  Block \epsilon-circulant preconditioner  Time-space fractional diffusion equations  
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations Journal article
Lin, Xuelei, Ng, Michael K., Sun, Haiwei. A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11(4), 827-853.
Authors:  Lin, Xuelei;  Ng, Michael K.;  Sun, Haiwei
Favorite | TC[WOS]:17 TC[Scopus]:17  IF:1.9/1.3 | Submit date:2018/10/30
Block Lower Triangular  Toeplitz-like Matrix  Diagonalization  Separable  Block Is An Element of-circulAnt Preconditioner  Time-space Fractional Diffusion Equations  
Fourth order finite difference schemes for time-space fractional sub-diffusion equations Journal article
Pang,Hong Kui, Sun,Hai Wei. Fourth order finite difference schemes for time-space fractional sub-diffusion equations[J]. Computers and Mathematics with Applications, 2016, 71(6), 1287-1302.
Authors:  Pang,Hong Kui;  Sun,Hai Wei
Favorite | TC[WOS]:31 TC[Scopus]:32 | Submit date:2019/05/27
Convergence  Fourth Order Finite-difference Approximation  Fractional Derivative  L1 Approximation  Stability  Time-space Fractional Sub-diffusion Equations  
Fourth order finite difference schemes for time–space fractional sub-diffusion equations Journal article
Pang, H.K., Sun, H. W.. Fourth order finite difference schemes for time–space fractional sub-diffusion equations[J]. Computers and Mathematics with Applications, 2016, 1287-1302.
Authors:  Pang, H.K.;  Sun, H. W.
Favorite | TC[WOS]:31 TC[Scopus]:32  IF:2.9/2.6 | Submit date:2022/07/25
Time–space Fractional Sub-diffusion Equations  Fractional Derivative  Fourth Order Finite-difference