UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation Journal article
Zhang, Lu, Zhang, Qifeng, Sun, Hai Wei. Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation[J]. Computers and Mathematics with Applications, 2023, 150, 211-228.
Authors:  Zhang, Lu;  Zhang, Qifeng;  Sun, Hai Wei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.9/2.6 | Submit date:2023/12/04
Exponential Integrator  Fractional Complex Ginzburg-landau Equation  Toeplitz Matrix  τ Matrix Preconditioner  Φ-function  
Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations Journal article
Chen, H., Sun, H. W.. Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations[J]. Numerical Algorithms, 2022.
Authors:  Chen, H.;  Sun, H. W.
Favorite | TC[WOS]:10 TC[Scopus]:7 | Submit date:2022/07/25
Fractional Allen-cahn Equation  Discrete Maximum Principle  Operator Splitting Method  Matrix Exponential  Toeplitz Matrix  
Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations Journal article
Chen, Hao, Sun, Hai Wei. Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations[J]. Numerical Algorithms, 2021, 90(2), 749-771.
Authors:  Chen, Hao;  Sun, Hai Wei
Favorite | TC[WOS]:10 TC[Scopus]:7  IF:1.7/1.9 | Submit date:2022/05/13
Discrete Maximum Principle  Fractional Allen-cahn Equation  Matrix Exponential  Operator Splitting Method  Toeplitz Matrix  
A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations Journal article
Chen, Hao, Sun, Hai Wei. A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations[J]. Journal of Scientific Computing, 2021, 87(1), 30.
Authors:  Chen, Hao;  Sun, Hai Wei
Favorite | TC[WOS]:14 TC[Scopus]:13  IF:2.8/2.7 | Submit date:2021/12/07
Dimensional Splitting  Discrete Maximum Principle  Exponential Time Differencing  Fractional Allen-cahn Equation  Matrix Exponential  Toeplitz Matrix  65f10  65l05  65n22  65f15  
Exponential Runge–Kutta Methodfor Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations Journal article
Zhang, L., Zhang, Q.F., Sun, H. W.. Exponential Runge–Kutta Methodfor Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations[J]. JournalofScientificComputing, 2020, UNSP59-UNSP59.
Authors:  Zhang, L.;  Zhang, Q.F.;  Sun, H. W.
Favorite |   IF:2.8/2.7 | Submit date:2022/07/25
Space fractional Ginzburg–Landau equation  Toeplitz structure  Exponential Runge–Kutta method  Matrix exponential  Shift-invert Lanczos method  
Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations Journal article
Zhang,Lu, Zhang,Qifeng, Sun,Hai Wei. Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations[J]. Journal of Scientific Computing, 2020, 83(3).
Authors:  Zhang,Lu;  Zhang,Qifeng;  Sun,Hai Wei
Favorite | TC[WOS]:27 TC[Scopus]:29  IF:2.8/2.7 | Submit date:2021/03/09
Exponential Runge–kutta Method  Matrix Exponential  Shift-invert Lanczos Method  Space Fractional Ginzburg–landau Equation  Toeplitz Structure  
Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method Journal article
Zhang, L., Sun, H. W.. Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 449-472.
Authors:  Zhang, L.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.4/2.3 | Submit date:2022/07/25
Riesz Fractional Reaction–diffusion Equation·toeplitz Structure  Exponential Runge–kutta Method  Matrix Exponential  Shift-invert Lanczos Method  
Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method Journal article
Zhang,Lu, Sun,Hai Wei. Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 62(1-2), 449-472.
Authors:  Zhang,Lu;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.4/2.3 | Submit date:2021/03/09
Exponential Runge–kutta Method  Matrix Exponential  Riesz Fractional Reaction–diffusion Equation  Shift-invert Lanczos Method  Toeplitz Structure  
Fast numerical solution for fractional diffusion equations by exponential quadrature rule Journal article
Zhang,Lu, Sun,Hai Wei, Pang,Hong Kui. Fast numerical solution for fractional diffusion equations by exponential quadrature rule[J]. Journal of Computational Physics, 2015, 299, 130-143.
Authors:  Zhang,Lu;  Sun,Hai Wei;  Pang,Hong Kui
Favorite | TC[WOS]:25 TC[Scopus]:26 | Submit date:2019/05/27
Exponential Quadrature Rule  Fractional Diffusion Equation  Matrix Exponential  Preconditioned Gmres  Shift-invert Arnoldi  Toeplitz-like Structure  
Fast exponential time integration scheme for option pricing with jumps Journal article
Lee,Spike T., Liu,Xin, Sun,Hai Wei. Fast exponential time integration scheme for option pricing with jumps[J]. Numerical Linear Algebra with Applications, 2012, 19(1), 87-101.
Authors:  Lee,Spike T.;  Liu,Xin;  Sun,Hai Wei
Favorite | TC[WOS]:17 TC[Scopus]:17 | Submit date:2019/05/27
Generating Function  Jump-diffusion  Option Pricing  Shift-and-invert Arnoldi Method  Toeplitz Matrix Exponential