UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Enhancing tourism demand forecasting with a transformer-based framework Journal article
Li, Xin, Xu, Yechi, Law, Rob, Wang, Shouyang. Enhancing tourism demand forecasting with a transformer-based framework[J]. Annals of Tourism Research, 2024, 107, 103791.
Authors:  Li, Xin;  Xu, Yechi;  Law, Rob;  Wang, Shouyang
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:10.4/11.2 | Submit date:2024/06/05
Temporal Fusion Transformer  Time Series Decomposition  Tourism Demand Forecasting  Tree-structured Parzen Estimator  
A novel model for tourism demand forecasting with spatial–temporal feature enhancement and image-driven method Journal article
Dong, Yunxuan, Zhou, Binggui, Yang, Guanghua, Hou, Fen, Hu, Zheng, Ma, Shaodan. A novel model for tourism demand forecasting with spatial–temporal feature enhancement and image-driven method[J]. NEUROCOMPUTING, 2023, 556, 126663.
Authors:  Dong, Yunxuan;  Zhou, Binggui;  Yang, Guanghua;  Hou, Fen;  Hu, Zheng; et al.
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:5.5/5.5 | Submit date:2023/08/30
Deep Learning  Feature Enhancement  Spatial Series To Image Series  Spatial–temporal Learning  Tourism Demand Forecasting  
Diverse feature extraction techniques in internet search query to forecast tourism demand: An in-depth comparison Journal article
Hu, Tao, Wang, Haiyan, Law, Rob, Geng, Juan. Diverse feature extraction techniques in internet search query to forecast tourism demand: An in-depth comparison[J]. Tourism Management Perspectives, 2023, 47, 101116.
Authors:  Hu, Tao;  Wang, Haiyan;  Law, Rob;  Geng, Juan
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:7.3/8.0 | Submit date:2023/07/20
Covd-19  Dimension Reduction  Feature Extraction Techniques  Search Query Data  Tourism Forecasting  
A graph-attention based spatial-temporal learning framework for tourism demand forecasting Journal article
Zhou, Binggui, Dong, Yunxuan, Yang, Guanghua, Hou, Fen, Hu, Zheng, Xu, Suxiu, Ma, Shaodan. A graph-attention based spatial-temporal learning framework for tourism demand forecasting[J]. Knowledge-Based Systems, 2023, 263, 110275.
Authors:  Zhou, Binggui;  Dong, Yunxuan;  Yang, Guanghua;  Hou, Fen;  Hu, Zheng; et al.
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:7.2/7.4 | Submit date:2023/04/03
Tourism Demand Forecasting  Dynamic Spatial Connections  Spatial-temporal Learning  Graph Neural Network  Attention Mechanism  
Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic Journal article
Jingyao Chen, Jie Yang, Shigao Huang, Xin Li, Gang Liu. Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic[J]. Entropy, 2023, 25(2), 338.
Authors:  Jingyao Chen;  Jie Yang;  Shigao Huang;  Xin Li;  Gang Liu
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.2 | Submit date:2023/03/06
Tourism Arrivals  Tourism Forecasting  Fuzzy Entropy  Empirical Wavelet Transform  Broad Learning  
Tourism demand forecasting using tourist-generated online review data Journal article
Hu, Mingming, Li, Hengyun, Song, Haiyan, Li, Xin, Law, Rob. Tourism demand forecasting using tourist-generated online review data[J]. Tourism Management, 2022, 90, 104490.
Authors:  Hu, Mingming;  Li, Hengyun;  Song, Haiyan;  Li, Xin;  Law, Rob
Favorite | TC[WOS]:62 TC[Scopus]:75  IF:10.9/11.5 | Submit date:2022/05/13
Hong Kong  Midas  Online Review  Social Media Data  Tourism Demand Forecasting  
A Combination Model Based Deep Long Term Model for Tourism Demand Forecasting Conference paper
Dong, Yunxuan, Xiao, Ling. A Combination Model Based Deep Long Term Model for Tourism Demand Forecasting[C]:Association for Computing Machinery, 2022, 126-131.
Authors:  Dong, Yunxuan;  Xiao, Ling
Favorite | TC[Scopus]:2 | Submit date:2022/05/17
Evolutionary Algorithms  Long Term Recurrent Neural Networks  Macau  Tourism Demand Forecasting  
A Spatial-temporal Model for Tourism Demand Forecasting Conference paper
Dong, Yunxuan, Zhou, Binggui, Yang, Guanghua, Hou, Fen, Ma, Shaodan. A Spatial-temporal Model for Tourism Demand Forecasting[C], 2022, 1810-1814.
Authors:  Dong, Yunxuan;  Zhou, Binggui;  Yang, Guanghua;  Hou, Fen;  Ma, Shaodan
Favorite | TC[Scopus]:0 | Submit date:2022/08/05
Fully Connected Long Short Term Memory  Spatial-temporal Learning  Tourism Demand Forecasting  
Hierarchical pattern recognition for tourism demand forecasting Journal article
Hu, Mingming, Qiu, Richard T.R., Wu, Doris Chenguang, Song, Haiyan. Hierarchical pattern recognition for tourism demand forecasting[J]. Tourism Management, 2021, 84, 104263.
Authors:  Hu, Mingming;  Qiu, Richard T.R.;  Wu, Doris Chenguang;  Song, Haiyan
Favorite | TC[WOS]:48 TC[Scopus]:52  IF:10.9/11.5 | Submit date:2021/12/08
Tourism Demand Forecasting  Hierarchical Pattern Recognition  Calendar Pattern  Tourism Demand Pattern  Floating Holidays  Daily Attraction Visits  
Tourism demand forecasting: A deep learning approach Journal article
Law,Rob, Li,Gang, Fong,Davis Ka Chio, Han,Xin. Tourism demand forecasting: A deep learning approach[J]. Annals of Tourism Research, 2019, 75, 410-423.
Authors:  Law,Rob;  Li,Gang;  Fong,Davis Ka Chio;  Han,Xin
Favorite | TC[WOS]:238 TC[Scopus]:291  IF:10.4/11.2 | Submit date:2019/08/01
Attention Mechanism  Deep Learning  Feature Engineering  Lag Order  Long-short-term-memory  Tourism Demand Forecasting