UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
On the Benefits of Two Dimensional Metric Learning Journal article
Di Wu, Fan Zhou, Boyu Wang, Qicheng Lao, Chi Man Wong, Changjian Shui, Yuan Zhou, Feng Wan. On the Benefits of Two Dimensional Metric Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 35(2), 1909-1921.
Authors:  Di Wu;  Fan Zhou;  Boyu Wang;  Qicheng Lao;  Chi Man Wong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.9/8.8 | Submit date:2022/05/13
Two Dimensional Learning  Metric Learning  Rademacher Complexity  Boosting  Low-rank Matrices  
Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection Journal article
Yuan H., Li J., Lai L.L., Tang Y.Y.. Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection[J]. Pattern Recognition, 2019, 89, 119-133.
Authors:  Yuan H.;  Li J.;  Lai L.L.;  Tang Y.Y.
Favorite | TC[WOS]:29 TC[Scopus]:33 | Submit date:2019/02/11
Nonnegative Spectral Analysis  Sparse Matrix Regression  Two-dimensional Feature Selection  Unsupervised Learning  
Unsupervised 3D local Feature Learning by Circle Convolutional Restricted Boltzmann Machine Journal article
Han, Z., Liu, Z., Han, J., Vong, C. M., Bu, S., Li, X.. Unsupervised 3D local Feature Learning by Circle Convolutional Restricted Boltzmann Machine[J]. IEEE Transactions on Image Processing (SCI-E), 2016, 5331-5344.
Authors:  Han, Z.;  Liu, Z.;  Han, J.;  Vong, C. M.;  Bu, S.; et al.
Favorite |   IF:10.8/12.1 | Submit date:2022/08/09
Three-dimensional displays  Shape  Machine learning  Convolution  Solid modeling  Feature extraction  Two dimensional displays