UM

Browse/Search Results:  1-10 of 18 Help

Selected(0)Clear Items/Page:    Sort:
Discrete uncertainty principle in quaternion setting and application in signal reconstruction Journal article
Yan Yang, Kit Ian Kou, Cuiming Zou. Discrete uncertainty principle in quaternion setting and application in signal reconstruction[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2021, 19(5).
Authors:  Yan Yang;  Kit Ian Kou;  Cuiming Zou
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.9/1.1 | Submit date:2021/12/08
Discrete Uncertainty Principle  Quaternion Fourier Transform  Signal Reconstruction  
Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere Journal article
Pei Dang, Tao Qian, Qiuhui Chen. Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere[J]. Advances in Applied Clifford Algebras, 2017, 27(4), 2985-3013.
Authors:  Pei Dang;  Tao Qian;  Qiuhui Chen
Favorite | TC[WOS]:6 TC[Scopus]:7 | Submit date:2019/02/11
Phase Derivative  Spherical Dirac Operator  Spherical Hilbert Transform  Spherical Signals  Uncertainty Principle  
Uncertainty principle for measurable sets and signal recovery in quaternion domains Journal article
Kou, Kit Ian, Yang, Yan, Zou, Cuiming. Uncertainty principle for measurable sets and signal recovery in quaternion domains[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40(11), 3892-3900.
Authors:  Kou, Kit Ian;  Yang, Yan;  Zou, Cuiming
Favorite | TC[WOS]:15 TC[Scopus]:16  IF:2.1/2.0 | Submit date:2018/10/30
Signal Recovery  Uncertainty Principle  Quaternion Fourier Transform  
Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces Journal article
Pei Dang, Tao Qian, Yan Yang. Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces[J]. Journal of Mathematical Analysis and Applications, 2016, 437(2), 912-940.
Authors:  Pei Dang;  Tao Qian;  Yan Yang
Favorite | TC[WOS]:8 TC[Scopus]:9 | Submit date:2019/02/11
Amplitude Derivative  Hilbert Transform  Phase Derivative  Signals In Euclidean Spaces  Uncertainty Principle  
Novel uncertainty principles associated with 2D quaternion Fourier transforms Journal article
Yang Y., Ian Kou K.. Novel uncertainty principles associated with 2D quaternion Fourier transforms[J]. Integral Transforms and Special Functions, 2016, 27(3), 213-226.
Authors:  Yang Y.;  Ian Kou K.
Favorite | TC[WOS]:18 TC[Scopus]:19 | Submit date:2019/02/13
Covariance  Heisenberg's Uncertainty Principle  Quaternion Fourier Transform  
Tighter Uncertainty Principles Based on Quaternion Fourier Transform Journal article
Yan Yang, Pei Dang, Tao Qian. Tighter Uncertainty Principles Based on Quaternion Fourier Transform[J]. Advances in Applied Clifford Algebras, 2016, 26(1), 479-497.
Authors:  Yan Yang;  Pei Dang;  Tao Qian
Favorite | TC[WOS]:19 TC[Scopus]:22 | Submit date:2019/02/11
Covariance  Quaternion Fourier Transform  Uncertainty Principle  
Space-frequency analysis in higher dimensions and applications Journal article
Yang Y., Dang P., Qian T.. Space-frequency analysis in higher dimensions and applications[J]. Annali di Matematica Pura ed Applicata, 2015, 194(4), 953-968.
Authors:  Yang Y.;  Dang P.;  Qian T.
Favorite | TC[WOS]:5 TC[Scopus]:5 | Submit date:2019/02/11
Frequency  Gauss Kernel  Hilbert Transform  Monogenic Signals  Poisson Kernel  UncertaInty PrInciple In Higher Dimensions  
Pitt's inequality and the uncertainty principle associated with thc quaternion Fourier transform Journal article
Chen, C, Kou, K. I., Liu, M.. Pitt's inequality and the uncertainty principle associated with thc quaternion Fourier transform[J]. Journal of mathematical analysis and applications, 2015, 681-700.
Authors:  Chen, C;  Kou, K. I.;  Liu, M.
Favorite |   IF:1.2/1.3 | Submit date:2022/08/24
Quaternion Fourier transform  Pitt’s inequality  Logarithmic uncertainty estimate Uncertainty principle  
Sharper uncertainty principles for the windowed Fourier transform Journal article
Liu M.-S., Kou K.I., Morais J., Dang P.. Sharper uncertainty principles for the windowed Fourier transform[J]. Journal of Modern Optics, 2015, 62(1), 46-55.
Authors:  Liu M.-S.;  Kou K.I.;  Morais J.;  Dang P.
Favorite | TC[WOS]:7 TC[Scopus]:8 | Submit date:2019/02/13
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Heisenberg's Uncertainty Principle  Instantaneous Frequency  Signal Moment  Windowed Fourier Transform  
Stronger uncertainty principles for hypercomplex signals Journal article
Yang Y., Dang P., Qian T.. Stronger uncertainty principles for hypercomplex signals[J]. Complex Variables and Elliptic Equations, 2015, 60(12), 1696-1711.
Authors:  Yang Y.;  Dang P.;  Qian T.
Favorite | TC[WOS]:12 TC[Scopus]:13 | Submit date:2019/02/11
Covariance  Fourier Transform  UncertaInty PrInciple In Higher Dimensions