×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [9]
Authors
SUN HAIWEI [5]
DING DENG [2]
HU GUANGHUI [1]
Document Type
Journal article [11]
Conference paper [1]
Date Issued
2024 [2]
2023 [1]
2021 [2]
2019 [2]
2017 [2]
2015 [2]
More...
Language
英語English [12]
Source Publication
Applications of ... [2]
Computer Physics... [2]
Advances in Appl... [1]
Applied Mathemat... [1]
COMPUTERS & MATH... [1]
JOURNAL OF SCIEN... [1]
More...
Indexed By
SCIE [9]
SSCI [2]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 12
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Stiff-cut leap-frog scheme for fractional Laplacian diffusion equations
Journal article
Sun, Tao, Sun, Hai Wei. Stiff-cut leap-frog scheme for fractional Laplacian diffusion equations[J]. Journal of Computational and Applied Mathematics, 2024, 451, 116021.
Authors:
Sun, Tao
;
Sun, Hai Wei
Favorite
|
TC[WOS]:
0
TC[Scopus]:
1
IF:
2.1
/
2.1
|
Submit date:2024/06/05
Fractional Laplacian Diffusion Equations
Leap-frog Scheme
Stiff-cut Scheme
Unconditional Convergence
Unconditional Stability
Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation
Journal article
Zhang, Fan, Sun, Hai Wei, Sun, Tao. Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation[J]. Applied Mathematics and Computation, 2024, 470, 128592.
Authors:
Zhang, Fan
;
Sun, Hai Wei
;
Sun, Tao
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
3.5
/
3.1
|
Submit date:2024/05/16
Error Estimates
Exponential Scalar Auxiliary Variable Method
Phase Field Crystal Equation
Unconditional Energy Stability
An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory
Journal article
Wang, Ting, Zhou, Jie, Hu, Guanghui. An SAV Method for Imaginary Time Gradient Flow Model in Density Functional Theory[J]. Advances in Applied Mathematics and Mechanics, 2023, 15(3), 719-736.
Authors:
Wang, Ting
;
Zhou, Jie
;
Hu, Guanghui
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
IF:
1.5
/
1.1
|
Submit date:2023/07/19
Density Functional Theory
Gradient Flow
Orthonormalization Free
Scalar Auxiliary Variable
Unconditional Energy Stability
A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS
Journal article
Zhang,Chun Hua, Jin,Jun Wei, Sun,Hai Wei, Sheng,Qin. A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Applications of Mathematics, 2021, 66(2), 213–232.
Authors:
Zhang,Chun Hua
;
Jin,Jun Wei
;
Sun,Hai Wei
;
Sheng,Qin
Favorite
|
TC[WOS]:
3
TC[Scopus]:
5
IF:
0.6
/
0.6
|
Submit date:2021/03/09
Nonlinear Time Fractional Schrödinger Equations
L1 Formula
Hybrid Compact Difference Method
Linearization
Unconditional Stability
A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS
Journal article
Zhang,Chun Hua, Jin,Jun Wei, Sun,Hai Wei, Sheng,Qin. A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Applications of Mathematics, 2021, 66(2), 213-232.
Authors:
Zhang,Chun Hua
;
Jin,Jun Wei
;
Sun,Hai Wei
;
Sheng,Qin
Favorite
|
TC[WOS]:
3
TC[Scopus]:
5
IF:
0.6
/
0.6
|
Submit date:2022/07/25
Nonlinear Time Fractional Schrödinger Equations
L1 Formula
Hybrid Compact Difference Method
Linearization
Unconditional Stability
CRANK-NICOLSON ADI METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NON-SEPARABLE COEFFICIENTS
Journal article
Lin, X.L., Ng, M.K., Sun, H. W.. CRANK-NICOLSON ADI METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NON-SEPARABLE COEFFICIENTS[J]. SIAM Journal on Numerical Analysis, 2019, 997-1019.
Authors:
Lin, X.L.
;
Ng, M.K.
;
Sun, H. W.
Favorite
|
IF:
2.8
/
3.5
|
Submit date:2022/07/25
non-separable variable coe cients
Crank-Nicolson ADI methods
space-fractional di usion equations
unconditional stability analysis
CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS
Journal article
XUE-LEI LIN, MICHAEL K. NG, HAI-WEI SUN. CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57(3), 997-1019.
Authors:
XUE-LEI LIN
;
MICHAEL K. NG
;
HAI-WEI SUN
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
IF:
2.8
/
3.5
|
Submit date:2019/06/10
Nonseparable Variable Coefficients
Crank–nicolson Adi Methods
Space-fractional Diffusion Equations
Unconditional Stability Analysis
A Fast Preconditioned Penalty Method for American Options Pricing Under Regime-Switching Tempered Fractional Diffusion Models
Journal article
Siu-Long Lei, Wenfei Wang, Xu Chen, Deng Ding. A Fast Preconditioned Penalty Method for American Options Pricing Under Regime-Switching Tempered Fractional Diffusion Models[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 75(3), 1633-1655.
Authors:
Siu-Long Lei
;
Wenfei Wang
;
Xu Chen
;
Deng Ding
Favorite
|
TC[WOS]:
14
TC[Scopus]:
14
IF:
2.8
/
2.7
|
Submit date:2019/05/22
American Options
Fast Preconditioned Penalty Method
Linear Complementarity Problems
Nonlinear Tempered Fractional Partial Differential Equations
Regime-switching Lévy Process
Unconditional Stability
A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation
Journal article
Xu Chen, Wenfei Wang, Deng Ding, Siu-Long Lei. A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73(9), 1932-1944.
Authors:
Xu Chen
;
Wenfei Wang
;
Deng Ding
;
Siu-Long Lei
Favorite
|
TC[WOS]:
13
TC[Scopus]:
13
IF:
2.9
/
2.6
|
Submit date:2019/05/22
American Options
Hamilton–jacobi–bellman Equation
Preconditioner
Tempered Fractional Derivative
Unconditional Stability
A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations
Journal article
Li,Leonard Z., Sun,Hai Wei, Tam,Sik Chung. A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations[J]. Computer Physics Communications, 2015, 187, 38-48.
Authors:
Li,Leonard Z.
;
Sun,Hai Wei
;
Tam,Sik Chung
Favorite
|
TC[WOS]:
23
TC[Scopus]:
23
|
Submit date:2019/05/27
Alternating Direction Implicit Method
Combined Compact Difference Scheme
Cubic Nonlinear
Schrödinger Equation
Solution Pattern
Unconditional Stability
Wave-like Motion