UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Sixth-order quasi-compact difference scheme for the time-dependent diffusion equation Journal article
Wang, Zhi, Ge, Yongbin, Sun, Hai-Wei, Sun, Tao. Sixth-order quasi-compact difference scheme for the time-dependent diffusion equation[J]. Japan Journal of Industrial and Applied Mathematics, 2023, 41(2), 757-788.
Authors:  Wang, Zhi;  Ge, Yongbin;  Sun, Hai-Wei;  Sun, Tao
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.7/0.7 | Submit date:2024/02/22
Diffusion Equation  Modified Helmholtz Equation  Quasi-compact Difference Method  Sixth-order Convergence  Unconditionally Stable  
A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrodinger equation Journal article
Lyu, Pin, Vong, Seakweng. A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrodinger equation[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34(6), 2153-2179.
Authors:  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.1/2.8 | Submit date:2018/10/30
Fractional Klein-gordon-schrodinger Equations  Linearized Scheme  Second-order Convergent  Unconditionally Convergent And Stable  
Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation Journal article
Vong, Seakweng, Lyu, Pin. Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76(2), 1252-1273.
Authors:  Vong, Seakweng;  Lyu, Pin
Favorite | TC[WOS]:26 TC[Scopus]:26  IF:2.8/2.7 | Submit date:2018/10/30
Time-fractional Burgers Equation  Second-order Linearized Scheme  Unconditionally Convergent And Stable  Maximum-norm Estimate  
A linearized second-order finite difference scheme for time fractional generalized BBM equation Journal article
Lyu, Pin, Vong, Seakweng. A linearized second-order finite difference scheme for time fractional generalized BBM equation[J]. APPLIED MATHEMATICS LETTERS, 2018, 78, 16-23.
Authors:  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:8 TC[Scopus]:10  IF:2.9/2.6 | Submit date:2018/10/30
Fractional Bbm Equation  Linearized Scheme  Second-order Convergence  Unconditionally Stable  
Multilevel circulant preconditioner for high-dimensional fractional diffusion equations Journal article
Lei S.-L., Chen X., Zhang X.. Multilevel circulant preconditioner for high-dimensional fractional diffusion equations[J]. East Asian Journal on Applied Mathematics, 2016, 6(2), 109-130.
Authors:  Lei S.-L.;  Chen X.;  Zhang X.
Favorite | TC[WOS]:29 TC[Scopus]:29 | Submit date:2019/02/14
Gmres Method  High-dimensional Two-sided Fractional Diffusion Equation  Implicit Finite Difference Method  Multilevel Circulant Preconditioner  Unconditionally Stable  
A CCD-ADI method for unsteady convection-diffusion equations Journal article
Sun,Hai Wei, Li,Leonard Z.. A CCD-ADI method for unsteady convection-diffusion equations[J]. Computer Physics Communications, 2014, 185(3), 790-797.
Authors:  Sun,Hai Wei;  Li,Leonard Z.
Favorite | TC[WOS]:34 TC[Scopus]:39 | Submit date:2019/05/27
Alternating Direction Implicit Method  Combined Compact Difference Scheme  Unconditionally Stable  Unsteady Convection-diffusion Equation  
A note on the stability of a second order finite difference scheme for space fractional diffusion equations Journal article
Qu,Wei, Lei,Siu Long, Vong,Seak Weng. A note on the stability of a second order finite difference scheme for space fractional diffusion equations[J]. Numerical Algebra, Control and Optimization, 2014, 4(4), 317-325.
Authors:  Qu,Wei;  Lei,Siu Long;  Vong,Seak Weng
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:1.1/1.0 | Submit date:2021/03/09
Riemann-liouville Derivative  Second Order Finite Difference Scheme  Space Fractional Diffusion Equation  Unconditionally Stable  
A note on the stability of a second order finite difference scheme for space fractional diffusion equations Journal article
Qu W., Lei S.-L., Vong S.-W.. A note on the stability of a second order finite difference scheme for space fractional diffusion equations[J]. Numerical Algebra, Control and Optimization, 2014, 4(4), 317-325.
Authors:  Qu W.;  Lei S.-L.;  Vong S.-W.
Favorite | TC[WOS]:5 TC[Scopus]:5 | Submit date:2018/12/24
Riemann-liouville Derivative  Second Order Finite Difference Scheme  Space Fractional Diffusion Equation  Unconditionally Stable