UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Streaming variational inference-empowered Bayesian nonparametric clustering for online structural damage detection with transmissibility function Journal article
Mei, Ling Feng, Yan, Wang Ji, Yuen, Ka Veng, Beer, Michael. Streaming variational inference-empowered Bayesian nonparametric clustering for online structural damage detection with transmissibility function[J]. Mechanical Systems and Signal Processing, 2024, 222.
Authors:  Mei, Ling Feng;  Yan, Wang Ji;  Yuen, Ka Veng;  Beer, Michael
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:7.9/8.0 | Submit date:2024/08/30
Bayesian Nonparametric Model  Damage Detection  Streaming Variational Inference  Truncation-free Full Dirichlet Process Gaussian Mixture Model  
An analytically tractable solution for hierarchical Bayesian model updating with variational inference scheme Journal article
Jia, Xinyu, Yan, Wang Ji, Papadimitriou, Costas, Yuen, Ka Veng. An analytically tractable solution for hierarchical Bayesian model updating with variational inference scheme[J]. Mechanical Systems and Signal Processing, 2023, 189, 110060.
Authors:  Jia, Xinyu;  Yan, Wang Ji;  Papadimitriou, Costas;  Yuen, Ka Veng
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:7.9/8.0 | Submit date:2023/02/28
Structural Dynamics  Hierarchical Bayesian Modelling  Variational Inference  Model Updating  Response Predictions  
Generative AI for brain image computing and brain network computing: a review Review article
2023
Authors:  Gong,Changwei;  Jing,Changhong;  Chen,Xuhang;  Pun,Chi Man;  Huang,Guoli; et al.
Favorite | TC[WOS]:31 TC[Scopus]:42 | Submit date:2023/08/03
Brain Imaging  Brain Network  Diffusion Model  Generative Adversarial Network  Generative Models  Variational Autoencoder  
A deep generative approach for crash frequency model with heterogeneous imbalanced data Journal article
Ding, Hongliang, Lu, Yuhuan, Sze, N. N., Chen, Tiantian, Guo, Yanyong, Lin, Qinghai. A deep generative approach for crash frequency model with heterogeneous imbalanced data[J]. Analytic Methods in Accident Research, 2022, 34, 100212.
Authors:  Ding, Hongliang;  Lu, Yuhuan;  Sze, N. N.;  Chen, Tiantian;  Guo, Yanyong; et al.
Favorite | TC[WOS]:36 TC[Scopus]:38  IF:12.5/12.3 | Submit date:2022/05/13
Augmented Variational Autoencoder  Crash Frequency Model  Imbalanced Crash Data  Machine Learning  
A variational level set model with closed-form solution for bimodal image segmentation Journal article
Wu, Yongfei, Liu, Xilin, Gao, Peiting, Chen, Zehua. A variational level set model with closed-form solution for bimodal image segmentation[J]. Multimedia Tools and Applications, 2021, 80(17), 25943-25963.
Authors:  Wu, Yongfei;  Liu, Xilin;  Gao, Peiting;  Chen, Zehua
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:3.0/2.9 | Submit date:2021/12/08
Image Segmentation  Variational Level Set Model  Closed–form Solution  Global Optimum  
A diversified shared latent variable model for efficient image characteristics extraction and modelling Journal article
Xiong, Hao, Tang, Yuan Yan, Murtagh, Fionn, Rutkowski, Leszek, Berkovsky, Shlomo. A diversified shared latent variable model for efficient image characteristics extraction and modelling[J]. NEUROCOMPUTING, 2021, 421, 244-259.
Authors:  Xiong, Hao;  Tang, Yuan Yan;  Murtagh, Fionn;  Rutkowski, Leszek;  Berkovsky, Shlomo
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:5.5/5.5 | Submit date:2021/12/07
Diversity-encouraging Prior  Latent Variable Model  Multi-view Learning  Variational Inference  
Guiding Variational Response Generator to Exploit Persona Conference paper
Wu, B., Li, M., Wang, Z., Chen, Y., Derek F. Wong, Feng, Q., Huang, J., Wang, B.. Guiding Variational Response Generator to Exploit Persona[C], ASSOC COMPUTATIONAL LINGUISTICS-ACL, 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:Association for Computational Linguistics, 2020, 53-65.
Authors:  Wu, B.;  Li, M.;  Wang, Z.;  Chen, Y.;  Derek F. Wong; et al.
Favorite | TC[WOS]:20 TC[Scopus]:27 | Submit date:2022/08/19
Dialogue System  Persona Modeling  Response Generator  Variational Model  
Parameter Estimation of Gaussian Mixture Model Based on Variational Bayesian Learning Conference paper
Zhao L., Shang Z., Qin A., Tang Y.Y.. Parameter Estimation of Gaussian Mixture Model Based on Variational Bayesian Learning[C], 2018, 99-104.
Authors:  Zhao L.;  Shang Z.;  Qin A.;  Tang Y.Y.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/11
Annealing Algorithm  Gaussian Mixture Model  Parameter Estimation  Tsallis-davbem  Variational Bayes Em