UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
A probability approximation framework: Markov process approach Journal article
Chen, Peng, Shao, Qi Man, Xu, Lihu. A probability approximation framework: Markov process approach[J]. Annals of Applied Probability, 2023, 33(2), 1619-1659.
Authors:  Chen, Peng;  Shao, Qi Man;  Xu, Lihu
Favorite | TC[WOS]:1 TC[Scopus]:0  IF:1.4/1.9 | Submit date:2023/05/02
Euler–maruyama (Em) Discretization  Itô’s Formula  Markov Process  Normal Approximation  Online Stochastic Gradient Descent  Probability Approximation  Stable Process  Stochastic Differential Equation  Wasserstein-1 Distance  
Approximation to Stochastic Variance Reduced Gradient Langevin Dynamics by Stochastic Delay Differential Equations Journal article
Chen, Peng, Lu, Jianya, Xu, Lihu. Approximation to Stochastic Variance Reduced Gradient Langevin Dynamics by Stochastic Delay Differential Equations[J]. Applied Mathematics and Optimization, 2022, 85(2), 15.
Authors:  Chen, Peng;  Lu, Jianya;  Xu, Lihu
Favorite | TC[WOS]:4 TC[Scopus]:3  IF:1.6/1.8 | Submit date:2022/05/17
Malliavin Calculus  Refined Lindeberg Principle  Stochastic Delay Differential Equations (Sddes)  Stochastic Variance Reduced Gradient Langevin Dynamics (Svrg-ld)  Wasserstein-1 Distance  
Approximation of stable law in Wasserstein-1 distance by Stein’s method1 Journal article
Xu,Lihu. Approximation of stable law in Wasserstein-1 distance by Stein’s method1[J]. Annals of Applied Probability, 2019, 29(1), 458-504.
Authors:  Xu,Lihu
Favorite | TC[WOS]:20 TC[Scopus]:20  IF:1.4/1.9 | Submit date:2021/03/11
L1 Discrepancy  Normal Domain Of Attraction Of Stable Law  Stable Approximation  Stein’s Method  Wasserstein-1 Distance (W1 Distance)  Α-stable Processes