UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Conference paper
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[C], EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND:CAMBRIDGE UNIV PRESS, 2017, 697-713.
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2018/10/30
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact  Nonlinear Scheme  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for Shallow Water Equations Journal article
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for Shallow Water Equations[J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22(4), 1049-1068.
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite | TC[WOS]:12 TC[Scopus]:12  IF:2.6/2.9 | Submit date:2018/10/30
Shallow Water Equations  C-property  Weighted Compact Nonlinear Scheme  Source Term  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Journal article
Gao,Zhen, Hu,Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[J]. East Asian Journal on Applied Mathematics, 2017, 7(4), 697-713.
Authors:  Gao,Zhen;  Hu,Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.2/1.0 | Submit date:2021/03/11
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact Nonlinear Scheme  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Journal article
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[J]. East Asian Journal on Applied Mathematics, 2017, 7(4), 697-713.
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/13
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact Nonlinear Scheme  
A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation Journal article
Wang Z., Vong S.. A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation[J]. International Journal of Computer Mathematics, 2015, 92(5), 970-979.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:27 TC[Scopus]:28 | Submit date:2018/12/24
Compact Adi Scheme  Convergence  Finite Difference Scheme  Fractional Diffusion-wave Equation  Weighted And Shifted Grünwald Difference Operator  
Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation Journal article
Wang Z., Vong S.. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J]. Journal of Computational Physics, 2014, 277, 1.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:283 TC[Scopus]:302 | Submit date:2018/10/30
Compact Difference Scheme  Fractional Diffusion-wave Equation  Modified Anomalous Fractional Sub-diffusion Equation  Weighted And Shifted Grünwald Difference Operator  
High order difference schemes for a time fractional differential equation with neumann boundary conditions Journal article
Vong S., Wang Z.. High order difference schemes for a time fractional differential equation with neumann boundary conditions[J]. East Asian Journal on Applied Mathematics, 2014, 4(3), 222-241.
Authors:  Vong S.;  Wang Z.
Favorite | TC[WOS]:18 TC[Scopus]:22 | Submit date:2018/12/24
Compact Adi Scheme  Convergence  Neumann Boundary Conditions  Time Fractional Differential Equation  Weighted And Shifted Grünwald Difference Operator