×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
E GUOKANG [4]
IU VAI PAN [2]
LAM CHI CHIU [1]
Document Type
Journal article [5]
Conference paper [1]
Date Issued
2016 [2]
2014 [2]
2012 [2]
Language
英語English [6]
Source Publication
Nonlinear Dynami... [4]
Central European... [1]
IUTAM 23th Inter... [1]
Indexed By
SCIE [3]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise
Journal article
Er G.K., Iu V.P., Wang K., Guo S.S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 85(3), 1887-1899.
Authors:
Er G.K.
;
Iu V.P.
;
Wang K.
;
Guo S.S.
Favorite
|
TC[WOS]:
17
TC[Scopus]:
18
|
Submit date:2019/02/12
Cable
Exponential Polynomial Closure Method
Fokker–planck–kolmogorov Equation
Multi-degree-of-freedom
Nonlinear Random Vibration
State-space-split Method
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise
Journal article
Er, G. K., Iu, V. P., Wang, K., Guo, S. S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 1887-1899.
Authors:
Er, G. K.
;
Iu, V. P.
;
Wang, K.
;
Guo, S. S.
Favorite
|
TC[WOS]:
17
TC[Scopus]:
18
|
Submit date:2022/08/28
Cable
Multi-degree-of-freedom
Nonlinear Random Vibration
Fokker-planck-kolmogorov Equation
State-space-split Method
Exponential Polynomial Closure Method.
Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises
Journal article
Guo, S, Er, G. K., Lam, C. C.. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 597-604.
Authors:
Guo, S
;
Er, G. K.
;
Lam, C. C.
Favorite
|
TC[WOS]:
17
TC[Scopus]:
19
IF:
5.2
/
4.8
|
Submit date:2022/08/06
Correlated Excitations
Exponential Polynomial Closure Method
Nonzero Mean
Fokker-planck-kolmogorov Equation
Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises
Journal article
Guo S.-S., Er G.-K., Lam C.C.. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 77(3), 597-604.
Authors:
Guo S.-S.
;
Er G.-K.
;
Lam C.C.
Favorite
|
TC[WOS]:
17
TC[Scopus]:
19
|
Submit date:2019/02/13
Correlated Excitations
Exponential Polynomial Closure Method
Fokker-planck-kolmogorov Equation
Nonzero Mean
Probabilistic Solution of the Stochastic Oscillators with Nonzero Mean Response
Conference paper
Er, G. K., Guo, S. S., Iu, V. P.. Probabilistic Solution of the Stochastic Oscillators with Nonzero Mean Response[C], Beijing:Chinese Society of Mechanics, 2012.
Authors:
Er, G. K.
;
Guo, S. S.
;
Iu, V. P.
Favorite
|
|
Submit date:2022/07/14
Stochastic nonlinear oscillator
even nonlinearity
Fokker-Planck equation
exponential polynomial closure method
The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation
Journal article
Guo S.-S., Er G.-K.. The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation[J]. Central European Journal of Physics, 2012, 10(3), 702-707.
Authors:
Guo S.-S.
;
Er G.-K.
Favorite
|
TC[WOS]:
8
TC[Scopus]:
10
IF:
0.765
/
1.012
|
Submit date:2019/02/13
Even Nonlinearity
Exponential-polynomial Closure Method
Fokker-planck-komogorov (Fpk) Equation
Poisson White Noise