UM

Browse/Search Results:  1-10 of 221 Help

Selected(0)Clear Items/Page:    Sort:
Subspace time series clustering of meteocean data to support ocean and coastal hydrodynamic modeling Journal article
Tan, Weikai, Stocchino, Alessandro, Cai, Zhongya. Subspace time series clustering of meteocean data to support ocean and coastal hydrodynamic modeling[J]. Ocean Engineering, 2024, 313(1), 119417.
Authors:  Tan, Weikai;  Stocchino, Alessandro;  Cai, Zhongya
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.6/4.8 | Submit date:2024/11/05
Data Mining  Meteocean Scenarios  Coastal Numerical Modeling  Reanalysis Database  
Neighbor Distribution Learning for Minority Class Augmentation Journal article
Zhou, Mengting, Gong, Zhiguo. Neighbor Distribution Learning for Minority Class Augmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12), 8901-8913.
Authors:  Zhou, Mengting;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.9/8.8 | Submit date:2024/09/03
Training  Topology  Graph Neural Networks  Data Models  Accuracy  Task Analysis  Image Color Analysis  Class-imbalanced Learning  Data Mining  Node Classification  
From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited Journal article
Wang, Zheng, Ding, Hongming, Pan, Li, Li, Jianhua, Gong, Zhiguo, Yu, Philip S.. From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.
Authors:  Wang, Zheng;  Ding, Hongming;  Pan, Li;  Li, Jianhua;  Gong, Zhiguo; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/11/05
Data Mining  Graph Convolutional Neural Networks  Graph-based Semi-supervised Learning (Gssl)  
CGraphNet: Contrastive Graph Context Prediction for Sparse Unlabeled Short Text Representation Learning on Social Media Journal article
Chen, Junyang, Guo, Jingcai, Li, Xueliang, Wang, Huan, Xu, Zhenghua, Gong, Zhiguo, Zhang, Liangjie, Leung, Victor C.M.. CGraphNet: Contrastive Graph Context Prediction for Sparse Unlabeled Short Text Representation Learning on Social Media[J]. IEEE Transactions on Computational Social Systems, 2024.
Authors:  Chen, Junyang;  Guo, Jingcai;  Li, Xueliang;  Wang, Huan;  Xu, Zhenghua; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.5/4.6 | Submit date:2024/11/05
Contrastive Graph Context Prediction  Sequential Learning  Social Media Short Text Representation Learning  Sparsity Problem  Text Mining  
Chinese Constitutonal Performance Unveiled: Text Mining Insights in Civil Litigations Journal article
SHUI BING. Chinese Constitutonal Performance Unveiled: Text Mining Insights in Civil Litigations[J]. ICL JOURNAL-VIENNA JOURNAL ON INTERNATIONAL CONSTITUTIONAL LAW, 2024, 18(3), 429-456.
Authors:  SHUI BING
Adobe PDF | Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.4/0.4 | Submit date:2024/06/30
Constitutional Realities  Civil Adjudications  Chinese Constitution  Constitutionalism  Constitutional Influence  Text Mining  
Travel patterns and spatial structure: understanding winter tourism by trajectory data mining Journal article
Liu, Jun, Chen, Jiaqi, Law, Rob, Wang, Shenghong, Yang, Luyu. Travel patterns and spatial structure: understanding winter tourism by trajectory data mining[J]. Asia Pacific Journal of Tourism Research, 2024, 29(11), 1351-1368.
Authors:  Liu, Jun;  Chen, Jiaqi;  Law, Rob;  Wang, Shenghong;  Yang, Luyu
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.3/4.4 | Submit date:2024/10/10
Spatiotemporal Behavior  Dbscan  Tourism Pattern  Tourism Spatial Structure  Trajectory Mining  Winter Tourism  
Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks Conference paper
Duan, Wenying, Fang, Tianxiang, Rao, Hong, He, Xiaoxi. Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks[C], New York, NY, USA:Association for Computing Machinery, 2024, 701-712.
Authors:  Duan, Wenying;  Fang, Tianxiang;  Rao, Hong;  He, Xiaoxi
Favorite | TC[Scopus]:0 | Submit date:2024/09/11
Lottery Ticket Hypothesis  Spatial-temporal Data Mining  Spatial-temporal Graph Neural Network  
Decoupled Invariant Attention Network for Multivariate Time-series Forecasting Conference paper
HAIHUA XU, WEI FAN, KUN YI, PENGYANG WANG. Decoupled Invariant Attention Network for Multivariate Time-series Forecasting[C]:International Joint Conferences on Artificial Intelligence, 2024, 2487-2495.
Authors:  HAIHUA XU;  WEI FAN;  KUN YI;  PENGYANG WANG
Favorite | TC[Scopus]:0 | Submit date:2024/08/28
Data Mining  
Reconstructing Missing Variables for Multivariate Time Series Forecasting via Conditional Generative Flows Conference paper
XUANMING HU, WEI FAN, HAIFENG CHEN, PENGYANG WANG, YANJIE FU. Reconstructing Missing Variables for Multivariate Time Series Forecasting via Conditional Generative Flows[C]:International Joint Conferences on Artificial Intelligence, 2024, 2063-2071.
Authors:  XUANMING HU;  WEI FAN;  HAIFENG CHEN;  PENGYANG WANG;  YANJIE FU
Favorite | TC[Scopus]:0 | Submit date:2024/08/28
Data Mining  
DyGKT: Dynamic Graph Learning for Knowledge Tracing Conference paper
KE CHENG, LINZHI PENG, PENGYANG WANG, JUNCHEN YE, LEILEI SUN, BOWEN DU. DyGKT: Dynamic Graph Learning for Knowledge Tracing[C], New York, NY, USA:Association for Computing Machinery, 2024, 409-420.
Authors:  KE CHENG;  LINZHI PENG;  PENGYANG WANG;  JUNCHEN YE;  LEILEI SUN; et al.
Favorite | TC[Scopus]:1 | Submit date:2024/08/28
Dynamic Graph  Educational Data Mining  Graph Neural Networks  Knowledge Tracing