Residential College | false |
Status | 已發表Published |
Electrostatic footpads enable agile insect-scale soft robots with trajectory control | |
Liang, Jiaming1,2,3; Wu, Yichuan4; Yim, Justin K.5; Chen, Huimin3; Miao, Zicong3; Liu, Hanxiao1,3; Liu, Ying1; Liu, Yixin3; Wang, Dongkai1,2,3; Qiu, Wenying1,2,3; Shao, Zhichun2; Zhang, Min3; Wang, Xiaohao1,3; Zhong, Junwen2,6; Lin, Liwei1,2 | |
2021-06-30 | |
Source Publication | Science Robotics |
ISSN | 2470-9476 |
Volume | 6Issue:55 |
Abstract | Agility and trajectory control are two desirable features for robotics, but they become very challenging for soft robots without rigid structures to support rapid manipulations. Here, a curved piezoelectric thin film driven at its structural resonant frequency is used as the main body of an insect-scale soft robot for its fast translational movements, and two electrostatic footpads are used for its swift rotational motions. These two schemes are simultaneously executed during operations through a simple two-wire connection arrangement. A high relative centripetal acceleration of 28 body length per square second compared with existing robots is realized on a 65-milligram tethered prototype, which is better than those of common insects, including the cockroach. The trajectory manipulation demonstration is accomplished by navigating the robot to pass through a 120-centimeter-long track in a maze within 5.6 seconds. One potential application is presented by carrying a 180-milligram on-board sensor to record a gas concentration route map and to identify the location of the leakage source. The radically simplified analog motion adjustment technique enables the scale-up construction of a 240-milligram untethered robot. Equipped with a payload of 1660 milligrams to include the control circuit, a battery, and photoresistors, the untethered prototype can follow a designated, 27.9-centimeter-long “S”-shaped path in 36.9 seconds. These results validate key performance attributes in achieving both high mobility and agility to emulate living agile insects for the advancements of soft robots. |
DOI | 10.1126/scirobotics.abe7906 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Robotics |
WOS Subject | Robotics |
WOS ID | WOS:000679506500005 |
Publisher | AMER ASSOC ADVANCEMENT SCIENCE, 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 |
Scopus ID | 2-s2.0-85109074045 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF ELECTROMECHANICAL ENGINEERING |
Corresponding Author | Zhang, Min; Zhong, Junwen; Lin, Liwei |
Affiliation | 1.Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China 2.Berkeley Sensor and Actuator Center, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, 94720, United States 3.Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China 4.School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China 5.Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15289, United States 6.Department of Electromechanical Engineering, Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, Macao |
Corresponding Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Liang, Jiaming,Wu, Yichuan,Yim, Justin K.,et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control[J]. Science Robotics, 2021, 6(55). |
APA | Liang, Jiaming., Wu, Yichuan., Yim, Justin K.., Chen, Huimin., Miao, Zicong., Liu, Hanxiao., Liu, Ying., Liu, Yixin., Wang, Dongkai., Qiu, Wenying., Shao, Zhichun., Zhang, Min., Wang, Xiaohao., Zhong, Junwen., & Lin, Liwei (2021). Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Science Robotics, 6(55). |
MLA | Liang, Jiaming,et al."Electrostatic footpads enable agile insect-scale soft robots with trajectory control".Science Robotics 6.55(2021). |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment