Residential College | false |
Status | 已發表Published |
A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis | |
Yang Z.-X.; Zhong J.-H. | |
2016-04-01 | |
Source Publication | Entropy |
ISSN | 10994300 |
Volume | 18Issue:4 |
Abstract | Acoustic signals are an ideal source of diagnosis data thanks to their intrinsic non-directional coverage, sensitivity to incipient defects, and insensitivity to structural resonance characteristics. However this makes prevailing signal de-nosing and feature extraction methods suffer from high computational cost, low signal to noise ratio (S/N), and difficulty to extract the compound acoustic emissions for various failure types. To address these challenges, we propose a hybrid signal processing technique to depict the embedded signal using generally effective features. The ensemble empirical mode decomposition (EEMD) is adopted as the fundamental pre-processor, which is integrated with the sample entropy (SampEn), singular value decomposition (SVD), and statistic feature processing (SFP) methods. The SampEn and SVD are identified as the condition indicators for periodical and irregular signals, respectively. Moreover, such a hybrid module is self-adaptive and robust to different signals, which ensures the generality of its performance. The hybrid signal processor is further integrated with a probabilistic classifier, pairwise-coupled relevance vector machine (PCRVM), to construct a new fault diagnosis system. Experimental verifications for industrial equipment show that the proposed diagnostic system is superior to prior methods in computational efficiency and the capability of simultaneously processing non-stationary and nonlinear condition monitoring signals. |
Keyword | Acoustic Signal Processing Ensemble Empirical Mode Decomposition (Eemd) Fault Diagnosis Hybrid System Sample Entropy (Sampen) Singular Value Decomposition (Svd) |
DOI | 10.3390/e18040112 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Physics |
WOS Subject | Physics, Multidisciplinary |
WOS ID | WOS:000375208200011 |
Scopus ID | 2-s2.0-84964562910 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF ELECTROMECHANICAL ENGINEERING Faculty of Science and Technology |
Corresponding Author | Yang Z.-X. |
Affiliation | Universidade de Macau |
First Author Affilication | University of Macau |
Corresponding Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Yang Z.-X.,Zhong J.-H.. A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis[J]. Entropy, 2016, 18(4). |
APA | Yang Z.-X.., & Zhong J.-H. (2016). A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis. Entropy, 18(4). |
MLA | Yang Z.-X.,et al."A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis".Entropy 18.4(2016). |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment