UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
A 160MHz-BW 68dB-SNDR 30.8mW Continuous-Time Pipeline DSM with Correlative Passive Low-Pass Filters and DAC Image Pre-Filtering Conference paper
Li, Ke, Congzhou, Xianyu, Qi, Liang, Guo, Mingqiang, Martins, Rui P., Sin, Sai Weng. A 160MHz-BW 68dB-SNDR 30.8mW Continuous-Time Pipeline DSM with Correlative Passive Low-Pass Filters and DAC Image Pre-Filtering[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 28-5.
Authors:  Li, Ke;  Congzhou, Xianyu;  Qi, Liang;  Guo, Mingqiang;  Martins, Rui P.; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2024/06/05
Wireless Communication  Computed Tomography  Pipelines  Capacitors  Low-pass Filters  Linearity  Lattices  
Non-Adiabatic Transitions in Parabolic and Super-Parabolic PT-Symmetric Non-Hermitian Systems in 1D Optical Waveguides Journal article
Kam,Chon Fai, Chen,Yang. Non-Adiabatic Transitions in Parabolic and Super-Parabolic PT-Symmetric Non-Hermitian Systems in 1D Optical Waveguides[J]. Annalen der Physik, 2021, 533(2), 2000349.
Authors:  Kam,Chon Fai;  Chen,Yang
Favorite | TC[WOS]:3 TC[Scopus]:2  IF:2.2/2.3 | Submit date:2021/03/09
Analytical Approximations  Exceptional Points  Non-adiabatic Transitions  Non-hermitian Pt-symmetric Systems  Optical Waveguide Lattices  
A sum rule of uniaxial anisotropy and external magnetic field for formation of Néel-type skyrmion lattices in two-dimensional ferromagnets Journal article
Liu,Zhaosen, Ian,Hou. A sum rule of uniaxial anisotropy and external magnetic field for formation of Néel-type skyrmion lattices in two-dimensional ferromagnets[J]. Journal of Physics Condensed Matter, 2019, 31(21).
Authors:  Liu,Zhaosen;  Ian,Hou
Favorite | TC[WOS]:7 TC[Scopus]:3  IF:2.3/2.2 | Submit date:2021/03/11
Néel-type Skyrmion Lattices  Quantum Computational Method  Sum Rule  
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices Journal article
Branquinho, A., Chen, Y., Filipuk, G., Rebocho, M. N.. A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices[J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 334, 356-366.
Authors:  Branquinho, A.;  Chen, Y.;  Filipuk, G.;  Rebocho, M. N.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.5/3.1 | Submit date:2018/10/30
Orthogonal Polynomials  Divided-difference Operator  Non-uniform Lattices  Askey-wilson Operator  Semi-Classical Class