UM

Browse/Search Results:  1-10 of 17 Help

Selected(0)Clear Items/Page:    Sort:
An effective one-iteration learning algorithm based on Gaussian mixture expansion for densities Journal article
Lu, Weiguo, Wu, Xuan, Ding, Deng, Yuan, Gangnan, Zhuang, Jirong. An effective one-iteration learning algorithm based on Gaussian mixture expansion for densities[J]. Communications in Nonlinear Science and Numerical Simulation, 2025, 142, 108494.
Authors:  Lu, Weiguo;  Wu, Xuan;  Ding, Deng;  Yuan, Gangnan;  Zhuang, Jirong
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.4/3.3 | Submit date:2025/01/22
Gaussian Mixture Model  Density Approximation  Neural Network  Expectation Maximization  Inverse Problem  Embedding  
LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks Journal article
Yang, Dingqi, Qu, Bingqing, Yang, Jie, Cudre-Mauroux, Philippe. LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 4(4), 843-1855.
Authors:  Yang, Dingqi;  Qu, Bingqing;  Yang, Jie;  Cudre-Mauroux, Philippe
Favorite | TC[WOS]:55 TC[Scopus]:57  IF:8.9/8.8 | Submit date:2022/07/18
User Mobility  Social Relationship  Location-based Social Network  Heterogeneous Hypergraph  Graph Embedding  
Revisiting Embedding Based Graph Analyses: Hyperparameters Matter! Journal article
Yang, Dingqi, Qu, Bingqing, Hussein, Rana, Rosso, Paolo, Cudre-Mauroux, Philippe, Liu, Jie. Revisiting Embedding Based Graph Analyses: Hyperparameters Matter![J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11), 11830-11845.
Authors:  Yang, Dingqi;  Qu, Bingqing;  Hussein, Rana;  Rosso, Paolo;  Cudre-Mauroux, Philippe; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:8.9/8.8 | Submit date:2023/12/06
Graph Analysis  Graph Embedding  Homogeneous Graph  Matrix Factorization  Network Representation  Random Walk  
Adversarial Caching Training: Unsupervised Inductive Network Representation Learning on Large-Scale Graphs Journal article
Junyang Chen, Zhiguo Gong, Wei Wang, Cong Wang, Zhenghua Xu, Jianming Lv, Xueliang Li, Kaishun Wu, Weiwen Liu. Adversarial Caching Training: Unsupervised Inductive Network Representation Learning on Large-Scale Graphs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12), 7079-7090.
Authors:  Junyang Chen;  Zhiguo Gong;  Wei Wang;  Cong Wang;  Zhenghua Xu; et al.
Favorite | TC[WOS]:22 TC[Scopus]:20  IF:10.2/10.4 | Submit date:2023/01/30
Adversarial Learning  Graph Neural Network  Inductive Learning  Negative Sampling (Ns)  Network Embedding  
Self-Training Enhanced: Network Embedding and Overlapping Community Detection With Adversarial Learning Journal article
Chen, Junyang, Gong, Zhiguo, Mo, Jiqian, Wang, Wei, Wang, Wei, Wang, Cong, Dong, Xiao, Liu, Weiwen, Wu, Kaishun. Self-Training Enhanced: Network Embedding and Overlapping Community Detection With Adversarial Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11), 6737-6748.
Authors:  Chen, Junyang;  Gong, Zhiguo;  Mo, Jiqian;  Wang, Wei;  Wang, Wei; et al.
Favorite | TC[WOS]:18 TC[Scopus]:18  IF:10.2/10.4 | Submit date:2022/12/01
Adversarial Learning  Network Embedding (Ne)  Overlapping Community Detection  Self-training  
A Simple yet Effective Layered Loss for Pre-training of Network Embedding Journal article
Chen, Junyang, Li, Xueliang, Li, Yuanman, Li, Paul, Wang, Mengzhu, Zhang, Xiang, Gong, Zhiguo, Wu, Kaishun, Leung, Victor C.M.. A Simple yet Effective Layered Loss for Pre-training of Network Embedding[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3), 1827 - 1837.
Authors:  Chen, Junyang;  Li, Xueliang;  Li, Yuanman;  Li, Paul;  Wang, Mengzhu; et al.
Favorite | TC[WOS]:6 TC[Scopus]:3  IF:6.7/6.0 | Submit date:2022/05/17
Graph Neural Networks  Layered Loss  Network Embedding  Pre-training Of Unlabeled Nodes  
Self-residual Embedding for Click-Through Rate Prediction Conference paper
Sun, Jingqin, Yin, Yunfei, Huang, Faliang, Zhou, Mingliang, U, Leong Hou. Self-residual Embedding for Click-Through Rate Prediction[C]. U L.H., Spaniol M., Sakurai Y., Chen J., BERLIN, GERMANY:Springer Science and Business Media Deutschland GmbH, 2021, 323 - 337.
Authors:  Sun, Jingqin;  Yin, Yunfei;  Huang, Faliang;  Zhou, Mingliang;  U, Leong Hou
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2022/09/05
Ctr Prediction  Self-residual Embedding  Neural Network  
Matrix factorization with dual-network collaborative embedding for social recommendation Journal article
Wei, Maosheng, Wu, Jun, Yang, Lina, Tang, Yuanyan. Matrix factorization with dual-network collaborative embedding for social recommendation[J]. International Journal of Wavelets Multiresolution and Information Processing, 2021, 19(5).
Authors:  Wei, Maosheng;  Wu, Jun;  Yang, Lina;  Tang, Yuanyan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.1 | Submit date:2021/12/08
Matrix Factorization  Network Embedding  Social Recommendation  
Venue Topic Model-enhanced Joint Graph Modelling for Citation Recommendation in Scholarly Big Data Journal article
Wang, Wei, Gong, Zhiguo, Ren, Jing, Xia, Feng, Lv, Zhihan, Wei, Wei. Venue Topic Model-enhanced Joint Graph Modelling for Citation Recommendation in Scholarly Big Data[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2021, 20(1), 4.
Authors:  Wang, Wei;  Gong, Zhiguo;  Ren, Jing;  Xia, Feng;  Lv, Zhihan; et al.
Favorite | TC[WOS]:30 TC[Scopus]:32  IF:1.8/1.7 | Submit date:2021/12/07
Academic Information Retrieval  Natural Language Processing  Network Embedding  Scientific Collaboration  
Scholar2vec: Vector Representation of Scholars for Lifetime Collaborator Prediction Journal article
wang, W., Xia, F, Wu, J, Gong, Z. G., Tong, H, Davison, B. Scholar2vec: Vector Representation of Scholars for Lifetime Collaborator Prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(3), 40.
Authors:  wang, W.;  Xia, F;  Wu, J;  Gong, Z. G.;  Tong, H; et al.
Favorite | TC[WOS]:13 TC[Scopus]:14  IF:4.0/3.9 | Submit date:2022/08/26
Academic Information Retrieval  Graph Learning  Network Embedding  Scientific Collaboration