UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
Non-stationary semi-analytical solution of vibro-impact system with multiplicative and external random stimulations Journal article
LUO JIE, E GUOKANG, IU VAI PAN. Non-stationary semi-analytical solution of vibro-impact system with multiplicative and external random stimulations[J]. Reliability Engineering and System Safety, 2025, 256, 110703.
Authors:  LUO JIE;  E GUOKANG;  IU VAI PAN
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2025/01/14
Vibro-impact  Semi-analytical  Stochastic  Random Stimulation  Non-stationary  
Non-stationary probabilistic analysis of non-linear ship roll motion due to modulated periodic and random excitations Journal article
Luo, Jie, Er, Guo Kang, Iu, Vai Pan, Ren, Ze Xin. Non-stationary probabilistic analysis of non-linear ship roll motion due to modulated periodic and random excitations[J]. Probabilistic Engineering Mechanics, 2024, 75, 103574.
Authors:  Luo, Jie;  Er, Guo Kang;  Iu, Vai Pan;  Ren, Ze Xin
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:3.0/3.0 | Submit date:2024/02/22
Gaussian White Noise  Modulated  Non-stationary  Periodic  Ship Roll Motion  
Transient PDF solution of nonlinear stochastic oscillator subjected to modulated Gaussian white noise Journal article
Luo, Jie, Er, Guo-Kang, Iu, Vai Pan, Lam, Chi Chiu. Transient PDF solution of nonlinear stochastic oscillator subjected to modulated Gaussian white noise[J]. International Journal of Structural Stability and Dynamics, 2023, 24(01), 22.
Authors:  Luo, Jie;  Er, Guo-Kang;  Iu, Vai Pan;  Lam, Chi Chiu
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2023/06/29
Non-stationary  Modulated White Noise  Nonlinear  Stochastic  Oscillator  
Geometric phase and non-stationary state Journal article
Qian L., Wu R.-S., Xu H., Yu Y., Pan H., Wang Z.-S.. Geometric phase and non-stationary state[J]. Optik, 2014, 125(17), 4814-4818.
Authors:  Qian L.;  Wu R.-S.;  Xu H.;  Yu Y.;  Pan H.; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:3.100/2.600 | Submit date:2019/04/08
Geometric Phase  Moving Boundary  Non-stationary State  Nonlocality  Potential Barrier  
Multiresolution signal decomposition and approximation based on support vector machines Journal article
Shang Z., Tang Y.Y., Fang B., Wen J., Ong Y.Z.. Multiresolution signal decomposition and approximation based on support vector machines[J]. International Journal of Wavelets Multiresolution and Information Processing, 2008, 6(4), 593-607.
Authors:  Shang Z.;  Tang Y.Y.;  Fang B.;  Wen J.;  Ong Y.Z.
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:0.9/1.1 | Submit date:2019/02/11
Multiresolution Analysis  Non-stationary Signals  Reproducing Kernel  Signal Approximation  Support Vector Machines  
Multi-resolution signal decomposition and approximation based on support vector machines Conference paper
Shang Z.-W., Fang B., Tang Y.-Y., Zhou Y.-T.. Multi-resolution signal decomposition and approximation based on support vector machines[C], 2008, 1467-1470.
Authors:  Shang Z.-W.;  Fang B.;  Tang Y.-Y.;  Zhou Y.-T.
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/02/11
Multi-resolution Analysis Signal Approximation  Non-stationary Signals  Reproducing Kernel  Support Vector Machines  
Two families of unit analytic signals with nonlinear phase Journal article
Chen Q., Li L., Qian T.. Two families of unit analytic signals with nonlinear phase[J]. Physica D: Nonlinear Phenomena, 2006, 221(1), 1.
Authors:  Chen Q.;  Li L.;  Qian T.
Favorite | TC[WOS]:28 TC[Scopus]:27 | Submit date:2018/10/30
Cayley Transform  Hilbert Transform  Instantaneous Frequency  Möbius Transform  Nonlinear And Non-stationary Signal  
Analytic unit quadrature signals with nonlinear phase Journal article
Qian T., Chen Q., Li L.. Analytic unit quadrature signals with nonlinear phase[J]. Physica D: Nonlinear Phenomena, 2005, 203(2018-01-02), 80.
Authors:  Qian T.;  Chen Q.;  Li L.
Favorite | TC[WOS]:74 TC[Scopus]:78 | Submit date:2018/10/30
Bedrosian's Theorem  Hilbert-huang Transform  Möbius Transform  Nonlinear And Non-stationary Signal  
Procedure for the non-stationary solution of nonlinear stochastic oscillators Conference paper
Er, G. K., Frimpong, S. , Iu, V. P.. Procedure for the non-stationary solution of nonlinear stochastic oscillators[C]:CPC Press, 2003, 181-186.
Authors:  Er, G. K.;  Frimpong, S. ;  Iu, V. P.
Favorite |  | Submit date:2022/08/28
Nonlinear stochastic oscillator  non-stationary solution  Fokker-Planck equation  probabilistic solution  
Probabilistic approach for modal identification using non-stationary noisy response measurements only Journal article
Yuen K.-V., Beck J.L., Katafygiotis L.S.. Probabilistic approach for modal identification using non-stationary noisy response measurements only[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(4), 1007-1023.
Authors:  Yuen K.-V.;  Beck J.L.;  Katafygiotis L.S.
Favorite | TC[WOS]:67 TC[Scopus]:69 | Submit date:2019/02/12
Bayesian Inference  Modal Updating  Non-stationary Response  Response Prediction  System Identification  Time Series