×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
THE STATE KEY LA... [2]
Authors
CHEN CHUN LUNG P... [1]
JIA WEI JIA [1]
MA SHAODAN [1]
ZHOU YICONG [1]
FEN HOU [1]
Document Type
Journal article [4]
Conference paper [1]
Date Issued
2023 [2]
2022 [2]
2020 [1]
Language
英語English [5]
Source Publication
IEEE Transaction... [2]
Applied Intellig... [1]
Knowledge-Based ... [1]
Proceedings of t... [1]
Indexed By
SCIE [4]
CPCI-S [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
A graph-attention based spatial-temporal learning framework for tourism demand forecasting
Journal article
Zhou, Binggui, Dong, Yunxuan, Yang, Guanghua, Hou, Fen, Hu, Zheng, Xu, Suxiu, Ma, Shaodan. A graph-attention based spatial-temporal learning framework for tourism demand forecasting[J]. Knowledge-Based Systems, 2023, 263, 110275.
Authors:
Zhou, Binggui
;
Dong, Yunxuan
;
Yang, Guanghua
;
Hou, Fen
;
Hu, Zheng
; et al.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
8
IF:
7.2
/
7.4
|
Submit date:2023/04/03
Tourism Demand Forecasting
Dynamic Spatial Connections
Spatial-temporal Learning
Graph Neural Network
Attention Mechanism
Detection of Deepfake Videos Using Long-Distance Attention
Journal article
Wei Lu, Lingyi Liu, Bolin Zhang, Junwei Luo, Xianfeng Zhao, Yicong Zhou, Jiwu Huang. Detection of Deepfake Videos Using Long-Distance Attention[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35(7), 9366-9379.
Authors:
Wei Lu
;
Lingyi Liu
;
Bolin Zhang
;
Junwei Luo
;
Xianfeng Zhao
; et al.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
9
IF:
10.2
/
10.4
|
Submit date:2023/08/03
Attention Mechanism
Deepfake Detection
Deepfakes
Face Manipulation
Faces
Forgery
Semantics
Spatial And Temporal Artifacts
Task Analysis
Time-domain Analysis
Transformers
A multi-mode traffic flow prediction method with clustering based attention convolution LSTM
Journal article
Huang, Xiaohui, Ye, Yuming, Wang, Cheng, Yang, Xiaofei, Xiong, Liyan. A multi-mode traffic flow prediction method with clustering based attention convolution LSTM[J]. Applied Intelligence, 2022, 52(13), 14773-14786.
Authors:
Huang, Xiaohui
;
Ye, Yuming
;
Wang, Cheng
;
Yang, Xiaofei
;
Xiong, Liyan
Favorite
|
TC[WOS]:
3
TC[Scopus]:
10
IF:
3.4
/
3.9
|
Submit date:2022/05/13
Attention Mechanism
Encoder-decoder
Multi-mode
Spatial-temporal Data
Traffic Flow Prediction
FSAD-Net: Feedback Spatial Attention Dehazing Network
Journal article
Zhou, Yu, Chen, Zhihua, Li, Ping, Song, Haitao, Chen, C. L.P., Sheng, Bin. FSAD-Net: Feedback Spatial Attention Dehazing Network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(10), 7719-7733.
Authors:
Zhou, Yu
;
Chen, Zhihua
;
Li, Ping
;
Song, Haitao
;
Chen, C. L.P.
; et al.
Favorite
|
TC[WOS]:
33
TC[Scopus]:
34
IF:
10.2
/
10.4
|
Submit date:2022/05/17
Dehazing Network
Image Dehazing
Recurrent Structure
Spatial Attention Mechanism
Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction
Conference paper
Lin, Haoxing, Bai, Rufan, Jia, Weijia, Yang, Xinyu, You, Yongjian. Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction[C], 2020, 36-46.
Authors:
Lin, Haoxing
;
Bai, Rufan
;
Jia, Weijia
;
Yang, Xinyu
;
You, Yongjian
Favorite
|
TC[WOS]:
29
TC[Scopus]:
42
|
Submit date:2021/12/06
Attention Mechanism
Long-term Prediction
Mining Spatial-temporal Information
Neural Network