UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction Journal article
Mo, Jiqian, Gong, Zhiguo. Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11), 11246-11258.
Authors:  Mo, Jiqian;  Gong, Zhiguo
Favorite | TC[WOS]:6 TC[Scopus]:4  IF:8.9/8.8 | Submit date:2023/12/04
Attention  Meta-learning  Traffic Flow Prediction  Transfer Learning  
Multi-view dynamic graph convolution neural network for traffic flow prediction Journal article
Huang,Xiaohui, Ye,Yuming, Yang,Xiaofei, Xiong,Liyan. Multi-view dynamic graph convolution neural network for traffic flow prediction[J]. Expert Systems with Applications, 2023, 222, 119779.
Authors:  Huang,Xiaohui;  Ye,Yuming;  Yang,Xiaofei;  Xiong,Liyan
Favorite | TC[WOS]:25 TC[Scopus]:27  IF:7.5/7.6 | Submit date:2023/08/03
Dynamic Fusion  Graph Convolution Network  Multi-view Encoder–decoders  Traffic Flow Prediction  
Expansion Planning of Soft Open Points Based Distribution System Considering EV Traffic Flow Journal article
Shen,Yichen, Zhang,Shenxi, Ding,Maosheng, Cheng,Haozhong, Li,Canbing, Liu,Dundun. Expansion Planning of Soft Open Points Based Distribution System Considering EV Traffic Flow[J]. IEEE Transactions on Industry Applications, 2023, 60(1), 1229-1239.
Authors:  Shen,Yichen;  Zhang,Shenxi;  Ding,Maosheng;  Cheng,Haozhong;  Li,Canbing; et al.
Favorite | TC[WOS]:1 TC[Scopus]:3  IF:4.2/4.5 | Submit date:2023/08/03
Distribution System Planning  Ev Navigation  Soft Open Points  Traffic Flow  Transportation Network  
TrafficAdaptor: an adaptive obfuscation strategy for vehicle location privacy against traffic flow aware attacks Conference paper
Qiu, Chenxi, Yan, Li, Squicciarini, Anna, Zhao, Juanjuan, Xu, Chengzhong, Pappachan, Primal. TrafficAdaptor: an adaptive obfuscation strategy for vehicle location privacy against traffic flow aware attacks[C], 2022, 1-10.
Authors:  Qiu, Chenxi;  Yan, Li;  Squicciarini, Anna;  Zhao, Juanjuan;  Xu, Chengzhong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:4 | Submit date:2023/01/31
Location Obfuscation  Location Privacy  Traffic Flow  
A multi-mode traffic flow prediction method with clustering based attention convolution LSTM Journal article
Huang, Xiaohui, Ye, Yuming, Wang, Cheng, Yang, Xiaofei, Xiong, Liyan. A multi-mode traffic flow prediction method with clustering based attention convolution LSTM[J]. Applied Intelligence, 2022, 52(13), 14773-14786.
Authors:  Huang, Xiaohui;  Ye, Yuming;  Wang, Cheng;  Yang, Xiaofei;  Xiong, Liyan
Favorite | TC[WOS]:3 TC[Scopus]:10  IF:3.4/3.9 | Submit date:2022/05/13
Attention Mechanism  Encoder-decoder  Multi-mode  Spatial-temporal Data  Traffic Flow Prediction  
Multi-mode dynamic residual graph convolution network for traffic flow prediction Journal article
Huang, Xiaohui, Ye, Yuming, Ding, Weihua, Yang, Xiaofei, Xiong, Liyan. Multi-mode dynamic residual graph convolution network for traffic flow prediction[J]. INFORMATION SCIENCES, 2022, 609, 548-564.
Authors:  Huang, Xiaohui;  Ye, Yuming;  Ding, Weihua;  Yang, Xiaofei;  Xiong, Liyan
Favorite | TC[WOS]:21 TC[Scopus]:23  IF:0/0 | Submit date:2022/08/02
Graph Convolution Network  Multi-mode Fusion  Spatio-temporal Data  Traffic Flow Prediction  
Adaptive traffic signal management method combining deep learning and simulation Journal article
Mok, Kawai, Zhang, Liming. Adaptive traffic signal management method combining deep learning and simulation[J]. Multimedia Tools and Applications, 2022, 83(5), 15439-15459.
Authors:  Mok, Kawai;  Zhang, Liming
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.0/2.9 | Submit date:2022/08/05
Deep Learning Based Vehicle Detection  Adaptive Traffic Signal Management  Traffic Data Acquisition  Traffic Flow Prediction  
Multi-step Coupled Graph Convolution with Temporal-Attention for Traffic Flow Prediction Journal article
Huang, Xiaohui, Ye, Yuming, Yang, Xiaofei, Xiong, Liyan. Multi-step Coupled Graph Convolution with Temporal-Attention for Traffic Flow Prediction[J]. IEEE Access, 2022, 10, 48179-48192.
Authors:  Huang, Xiaohui;  Ye, Yuming;  Yang, Xiaofei;  Xiong, Liyan
Favorite | TC[WOS]:5 TC[Scopus]:6  IF:3.4/3.7 | Submit date:2022/05/17
Graph Convolutional Network  Multi-step Attention  Traffic Flow Prediction  
A time-dependent attention convolutional LSTM method for traffic flow prediction Journal article
Xiaohui Huang, Jie Tang, Xiaofei Yang, Liyan Xiong. A time-dependent attention convolutional LSTM method for traffic flow prediction[J]. APPLIED INTELLIGENCE, 2022, 52(15), 17371–17386.
Authors:  Xiaohui Huang;  Jie Tang;  Xiaofei Yang;  Liyan Xiong
Favorite | TC[WOS]:10 TC[Scopus]:11  IF:3.4/3.9 | Submit date:2022/05/17
Attention Mechanism  Convolutional Lstm  Spatio-temporal Data  Traffic Flow Prediction  
Dynamic traffic bottlenecks identification based on congestion diffusion model by influence maximization in metro-city scales Journal article
Zhao,Baoxin, Xu,Cheng Zhong, Liu,Siyuan, Zhao,Juanjuan, Li,Li. Dynamic traffic bottlenecks identification based on congestion diffusion model by influence maximization in metro-city scales[J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33(6), e5790.
Authors:  Zhao,Baoxin;  Xu,Cheng Zhong;  Liu,Siyuan;  Zhao,Juanjuan;  Li,Li
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.5/1.5 | Submit date:2021/03/09
Bottlenecks Identification  Influence Maximization  Traffic Congestion Diffusion  Traffic Flow Influence