UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
A Gaussian Process Based Method with Deep Kernel Learning for Pricing High-Dimensional American Options Journal article
Zhuang, Jirong, Ding, Deng, Lu, Weiguo, Wu, Xuan, Yuan, Gangnan. A Gaussian Process Based Method with Deep Kernel Learning for Pricing High-Dimensional American Options[J]. Computational Economics, 2025.
Authors:  Zhuang, Jirong;  Ding, Deng;  Lu, Weiguo;  Wu, Xuan;  Yuan, Gangnan
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.9/1.8 | Submit date:2025/01/22
Deep Kernel Learning  Gaussian Process  High-dimensional American Option  Machine Learning  Regression Based Monte Carlo Method  
A novel and efficient method for real-time simulating spatial and temporal evolution of coastal urban pluvial flood without drainage network Journal article
Qin, Jintao, Gao, Liang, Lin, Kairong, Shen, Ping. A novel and efficient method for real-time simulating spatial and temporal evolution of coastal urban pluvial flood without drainage network[J]. Environmental Modelling and Software, 2024, 172, 105888.
Authors:  Qin, Jintao;  Gao, Liang;  Lin, Kairong;  Shen, Ping
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:4.8/5.2 | Submit date:2024/02/22
Drainage Data Missing  Equivalent Drainage Hydrodynamic Model  Flood Real-time Simulation  Hybrid Method  Immediate Calibration  Machine Learning  
Combining dimensionality reduction methods with neural networks for realized volatility forecasting Journal article
Andrea Bucci, HE Lidan, Liu Z(劉志). Combining dimensionality reduction methods with neural networks for realized volatility forecasting[J]. Annals of Operations Research, 2023.
Authors:  Andrea Bucci;  HE Lidan;  Liu Z(劉志)
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:4.4/4.4 | Submit date:2023/08/15
Realized Volatility  Artificial Neural Network  Machine-learning  Pca Method  Bayesian Model Averaging  
Editorial: Spatial modelling and failure analysis of natural and engineering disasters through data-based methods Other
2022-08-26
Authors:  Liu, Jinquan;  Yang, Tao;  Yong, Zhou;  Wang, Song;  Huang, Gui; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2023/01/30
Advanced Numerical Method  Data-based Models  Engineering Disasters  Machine Learning  Unfavorable Geology  
An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems Journal article
Luo, Jiahua, Vong, Chi Man, Liu, Zhenbao, Chen, Chuangquan. An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems[J]. IEEE Access, 2021, 9, 87543-87551.
Authors:  Luo, Jiahua;  Vong, Chi Man;  Liu, Zhenbao;  Chen, Chuangquan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.4/3.7 | Submit date:2022/05/13
Inverse-free  Large Classification  Quasi-newton Method  Sparse Bayesian Extreme Learning Machine  Sparse Model  
An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems Journal article
Luo, J.H., Vong, C. M., Liu, Z.B., Chen, C.Q.. An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems[J]. IEEE Acess (SCI-E), 2021, 1-9.
Authors:  Luo, J.H.;  Vong, C. M.;  Liu, Z.B.;  Chen, C.Q.
Favorite |   IF:3.4/3.7 | Submit date:2022/08/09
Inverse-free  quasi-Newton method  sparse Bayesian extreme learning machine  large classification  sparse model  
An estimating combination method for interval forecasting of electrical load time series Journal article
Ma, Xuejiao, Dong, Yunxuan. An estimating combination method for interval forecasting of electrical load time series[J]. Expert Systems with Applications, 2020, 158.
Authors:  Ma, Xuejiao;  Dong, Yunxuan
Favorite | TC[WOS]:19 TC[Scopus]:22  IF:7.5/7.6 | Submit date:2021/12/06
Distribution Estimation  Electrical Load Time Series  Feature Selection  Interval Forecasting  Machine Learning Method